我国“微笑计划”SMILE卫星完成初样研制总结,转入正样阶段

苹果id购买.png

本文目录一览:

我国首颗绕月人造卫星是什么?

“嫦娥1”号是中国自主研制并发射的首个月球探测器。中国月球探测工程“嫦娥1”号月球探测卫星由中国空间技术研究院研制,以中国古代神话人物“嫦娥”命名,嫦娥奔月是一个在中国流传的古老的神话故事。“嫦娥1”号主要用于获取月球表面三维影像、分析月球表面有关物质元素的分布特点、探测月壤厚度、探测地月空间环境等。整个“奔月”过程大概需要8~9天。“嫦娥1”号运行在距月球表面200千米的圆形极轨道上。“嫦娥1”号工作寿命1年,绕月飞行1年,执行任务后不再返回地球。“嫦娥1”号发射成功,中国成为世界第五个发射月球探测器的国家地区。

“嫦娥1”号是中国的首颗绕月人造卫星,由中国空间技术研究院承担研制。“嫦娥1”号平台以中国已成熟的“东方红3”号卫星平台为基础进行研制,并充分继承“中国资源2”号、“中巴地球资源”等卫星的现有成熟技术和成果,进行适应性改造。卫星平台利用“东方红3”号卫星平台技术研制,对结构、推进、电源、测控和数传等8个分系统进行了适应性修改。“嫦娥1”号星体为一个2米×1?72米×2?2米的长方体,两侧各有一个太阳能电池帆板,完全展开后最大跨度达18?1米,重2350千克。有效载荷包括CCD立体相机、成像光谱仪、太阳宇宙射线监测器和低能粒子探测器等科学探测仪器。

“嫦娥1”号月球探测卫星由卫星平台和有效载荷两大部分组成。其卫星平台由结构分系统,热控分系统,制导、导航与控制分系统,推进分系统,数据管理分系统,测控数传分系统,定向天线分系统和有效载荷等9个分系统组成。这些分系统各司其职、协同工作,保证月球探测任务的顺利完成。星上的有效载荷用于完成对月球的科学探测和试验,其他分系统则为有效载荷正常工作提供支持、控制、指令和管理保证服务。

“嫦娥1”号卫星发射后首先将被送入一个椭圆形地球同步轨道,这一轨道离地面最近距离为200千米,最远为5?1万千米,探月卫星将用16小时环绕此轨道一圈后,通过加速再进入一个更大的椭圆轨道,距离地面最近距离为500千米,最远为12?8万千米,需要48小时才能环绕一圈。此后,探测卫星不断加速,开始“奔向”月球,大概经过114小时的飞行,在快要到达月球时,依靠控制火箭的反向助推减速。在被月球引力“俘获”后,成为环月球卫星,最终在离月球表面200千米高度的极月圆轨道绕月球飞行,开展拍摄三维影像等工作。卫星奔月总共需时114个小时,距离地球接近38?44万千米。而过去,中国发射的卫星距离地面一般都在3?58万千米左右。

根据中国月球探测工程的四项科学任务,在“嫦娥1”号上搭载了8种24台件科学探测仪器,重130千克,即微波探测仪系统、γ射线谱仪、X射线谱仪、激光高度计、太阳高能粒子探测器、太阳风离子探测器、CCD立体相机、干涉成像光谱仪。

在初样研制阶段,有电性星和结构星这两颗初样卫星承担卫星测试工作。电性星的试验主要是用于一些带有电子性能的设备的综合测试,结构星的试验主要是要考核结构设计的合理性和整星上温度控制设计的合理性。两颗初样星进行整星测试。整个初样测试阶段持续到2007年6月份,随后进入卫星正样星的研制阶段,进行“嫦娥1”号正样卫星的研制。

为了保证完成月球探测工程任务,对承担卫星发射任务的“长征3”号甲火箭进行了41项可靠性的设计工作,以提高其运载可靠性。

“嫦娥1”号月球探测卫星于2007年10月24日在西昌卫星发射中心由“长征3”号甲运载火箭发射升空。运行在距月球表面200千米的圆形极轨道上执行科学探测任务。

北京时间2007年10月24日18时05分左右,“嫦娥1”号探测器从西昌卫星发射中心由“长征3”号甲运载火箭成功发射。卫星发射后,将用8~9天时间完成调相轨道段、地月转移轨道段和环月轨道段飞行。经过8次变轨后,于11月7日正式进入工作轨道。11月18日卫星转为对月定向姿态,11月20日开始传回探测数据。

2007年11月26日,中国国家航天局正式公布“嫦娥1”号卫星传回的第一幅月面图像。

2007年12月12日上午10时,庆祝我国首次月球探测工程圆满成功大会在北京人民大会堂举行。

2009年3月1日16时13分,“嫦娥1”号卫星在控制下成功撞击月球,为我国月球探测的一期工程画上了圆满句号。

知识点

中国首次月球探测工程五项工程目标

中国首次月球探测工程由月球探测卫星、运载火箭、发射场、测控和地面应用等五大系统组成,工程系统五项工程目标:

1?研制和发射我国第一个月球探测卫星;2?初步掌握绕月探测基本技术;3?首次开展月球科学探测;4?初步构建月球探测航天工程系统;5?为月球探测后续工程积累经验。

嫦娥1号简介谁知道

嫦娥1号2006年底发射 将建火箭加油站

探月工程副总设计师龙乐豪日前接受本报专访时表示,“嫦娥一号”预计在2006年底或2007年初发射,如果条件允许,天文爱好者可用肉眼观测。

中国探月计划问世后,一支庞大的“科技军团”将负责把科学家的设想变为现实,中国“嫦娥一号”绕月探测工程副总设计师龙乐豪就是领军人物之一。

每月免费发450条短信 通用网址,E通天下

俄罗斯方块邀你玩 七夕钻石男女靓丽比拼

“目前,中国‘嫦娥一号’绕月探测工程的各项准备工作进展情况良好。”日前,龙乐豪院士在双星计划探测二号卫星发射现场接受本报记者采访时说,“嫦娥一号”只有成功进入月球卫星工作轨道后,才能实现对月球的探测计划。他说:“如果地面发射、飞行途中出现任何问题,整个计划都有可能前功尽弃。”作为确保嫦娥探月工程技术首席专家之一,龙乐豪告诉记者,通俗一点讲,工程有三大目标——“到得了”、“转得起”、“传得到”。龙院士说:“工程的三大目标也正是我们技术上的三大攻关难点,将向中国的航天技术提出新的挑战。”

如何奔月:长三甲火箭搭天梯

据了解,继“两弹一星”、载人航天之后,深空探测比如月球探测工程将成为中国航天史上的第三大里程碑。龙院士讲,深空探测需要火箭把航天器送入更高的预定轨道,龙乐豪在介绍“嫦娥一号”的“助力神”——“长三甲”运载火箭时说,火箭运载系统重量241吨,全箭长度53米。火箭这样的“身材”可以将130公斤的“嫦娥一号”探测器及有效载荷送入预定轨道。龙院士解释说:“此次中国月球探测一期工程的飞行轨道高度有40万公里,要求运载系统在技术上不仅能将飞行器打到这样的高度上去,而且要求测控系统测得准。”

奔月路径:将多次飞经我国上空

“天上一天,地上十年”,传说中的嫦娥奔向月亮可能也就一天工夫。龙院士介绍说:“从起飞到进入目标轨道的飞行时间大约为10天,飞行过程中‘嫦娥一号’将多次经过我国上空。”对国内部分地区的天文爱好者而言,无疑是个好消息。据天文学家预测,如果地理位置、天气条件允许的话,有可能用肉眼观测到现代“嫦娥”奔月的情景。龙乐豪院士透露,“嫦娥一号”探测器及火箭系统的研制工作正在稳步进行中,预计2006年年底可以待命出厂。

奔月传信:“天罗地网”接收数据

“嫦娥一号”在经过了发射、飞行、进入预定轨道等程序后,如何将探测数据传回地面,成为工程的技术难题。龙乐豪说,“嫦娥一号”的第一个工作任务是为月球拍“全景照”;另外,目前世界上还未探测到月球南北纬50度以上的区域,而此次将实施对这一地方的探测。龙院士说:“要保证这些探测数据顺利传回来,需要有先进的卫星接收系统、航天测控网、地面应用系统等做支持。目前,我们在技术上需要重点解决的就在此。”据了解,探月工程对火箭、卫星、测控、遥感、仪器研制等技术提出了创新性要求。

奔月时机:每天只有约35分钟

“嫦娥一号”发射时间是择机确定的。为什么这么说?据龙院士介绍,适合火箭发射的时间一年中仅有不多的月份,而当月每天只有约35分钟的时间适宜发射。龙乐豪说,考虑到光照、太阳入射角、测控条件以及轨道限制等因素,“嫦娥一号”首次飞行的时间有可能会在2006年年底或2007年初。据龙院士透露,“嫦娥工程”二期、三期的运载火箭可能为长征五号、长征六号。龙院士说,“嫦娥一号”是我国迄今为止飞到目标轨道的距离与时间最长的航天器,其飞行时序与控制十分复杂,正所谓:“乘旧车、跑远道,安全可靠最紧要”。目前,长征五号、长征六号等长征系列火箭的研制工作正处于论证阶段。

奔月设想:二百公里高轨道建天基

如果飞行器要飞往异常遥远的星体去进行科学探测,动力燃料的使用将成为一个实际问题。带多少燃料才能满足飞行器的航程需要呢?假如中途动力不足又该如何应对?有过多年“实战经验”的火箭专家龙乐豪院士早就为飞行器的“吃饭”问题想好了对策——在距离地面大约200公里的轨道上建一座“天基”,作为飞行器的加油站。

龙院士的创意是这样的:火箭从天基上飞起的重量大约为200吨左右,而在地基上起飞时火箭重量达2800吨左右。龙乐豪预测,火箭可以在天基上做短暂停留,加注燃料后继续飞行。同时,龙院士告诉记者,天基的建设有三个前提条件:第一,从地面上向天基运送储备动力燃料,需要多次反复运输;第二,在天基上组装、加注、发射;第三,确保经济、可靠。

资料:探月工程分为三期

2004年1月,月球探测工程经国务院正式批准立项后,该工程被命名为“嫦娥工程”,第一颗绕月卫星命名为“嫦娥一号”。

为此国家投资约14亿元人民币,准备于2007年年初以前发射“嫦娥一号”。我国整个探月工程分为“绕、落、回”三个阶段。一期工程启动时间2004年2月,计划将在2006年底或2007年初发射的探月卫星“嫦娥一号”,对月球表面环境、地貌、地形、地质构造与物理场进行探测。二期工程实施时间为2007年至2010年,目标是研制和发射航天器,以软着陆的方式降落在月球上进行探测。第三期工程实施时间为2011年至2020年,目标是月面巡视勘察与采样返回。

月球的奥秘

月球 月球我国“微笑计划”SMILE卫星完成初样研制总结转入正样阶段的正面与背面: 正面:

背面: 物质介绍: 月球俗称月亮我国“微笑计划”SMILE卫星完成初样研制总结,转入正样阶段,也称太阴。月球的年龄大约也是46亿年,它与地球形影相随,关系密切。月球也有壳、幔、核等分层结构。最外层的月壳平均厚度约为60-65公里。月壳下面到1000公里深度是月幔,它占我国“微笑计划”SMILE卫星完成初样研制总结,转入正样阶段了月球的大部分体积。月幔下面是月核,月核的温度约为1000度,很可能是熔融状态的。月球直径约3476公里,是地球的3/11。体积只有地球的1/49,质量约7350亿亿吨,相当于地球质量的1/81,月面的重力差不多相当于地球重力的1/6。 月球上面有阴暗的部分和明亮的区域。早期的天文学家在观察月球时,以为发暗的地区都有海水覆盖,因此把它们称为“ 海 ”。著名的有云海、湿海、静海等。而明亮的部分是山脉,那里层峦叠嶂,山脉纵横,到处都是星罗棋布的环形山。位于南极附近的贝利环形山直径295公里,可以把整个海南岛装进去。最深的山是牛顿环形山,深达8788米。除了环形山,月面上也有普通的山脉。高山和深谷叠现,别有一番风光。 月球的正面永远向着地球。另一方面,除了在月面边沿附近的区域因天秤动而间中可见以外,月球的背面绝大部分不能从地球看见。在没有探测器的年代,月球的背面一直是个未知的世界。 月球背面的一大特色是它几乎没有月海这种较暗的月面特征。而当探测器运行至月球背面时,它将无法与地球直接通讯。 轨道资料 平均轨道半径 384,400千米 轨道偏心率 0.0549 近地点距离 363,300千米 远地点距离 405,500千米 平均公转周期 27天7小时43分11.559秒 平均公转速度 1.023千米/秒 轨道倾角 在28.58°与18.28°之间变化 (与黄道面的交角为5.145°) 升交点赤经 125.08° 近地点辐角 318.15° 物理特征 赤道直径 3,476.2 千米 两极直径 3,472.0 千米 扁率 0.0012 表面面积 3.976×107平方千米 扁率 0.0012 体积 2.199×1010 立方千米 质量 7.349×1022 千克 平均密度 水的3.350倍 赤道重力加速度 1.62 m/s2 地球的1/6 逃逸速度 2.38千米/秒 自转周期 27天7小时43分11.559秒 (同步自转) 自转速度 16.655 米/秒(于赤道) 自转轴倾角 在3.60°与6.69°之间变化 (与黄道的交角为1.5424°) 反照率 0.12 满月时视星等 -12.74 表面温度(t) -233~123℃ (平均-23℃) 大气压 1.3×10-10 千帕 月球约一个农历月绕地球运行一周,而每小时相对背景星空移动半度,即与月面的视直径相若。与其他卫星不同,月球的轨道平面较接近黄道面,而不是在地球的赤道面附近。 相对于背景星空,月球围绕地球运行(月球公转)一周所需时间称为一个恒星月我国“微笑计划”SMILE卫星完成初样研制总结,转入正样阶段;而新月与下一个新月(或两个相同月相之间)所需的时间称为一个朔望月。朔望月较恒星月长是因为地球在月球运行期间,本身也在绕日的轨道上前进了一段距离。 因为月球的自转周期和它的公转周期是完全一样的,我国“微笑计划”SMILE卫星完成初样研制总结,转入正样阶段我们只能看见月球永远用同一面向著地球。自月球形成早期,月球便一直受到一个力矩的影响引致自转速度减慢,这个过程称为潮汐锁定。亦因此,部分地球自转的角动量转变为月球绕地公转的角动量,其结果是月球以每年约38 毫米的速度远离地球。同时地球的自转越来越慢,一天的长度每年变长15 微秒。 月球对地球所施的引力是潮汐现象的起因之一。月球围绕地球的轨道为同步轨道,所谓的同步自转并非严格。由于月球轨道为椭圆形,当月球处于近日点时,它的自转速度便追不上公转速度,因此我们可见月面东部达东经98度的地区,相反,当月处于远日点时,自转速度比公转速度快,因此我们可见月面西部达西经98度的地区。这种现象称为天秤动。又由于月球轨道倾斜于地球赤道,因此月球在星空中移动时,极区会作约7度的晃动,这种现象称为天秤动。再者,由于月球距离地球只有60地球半径之遥,若观测者从月出观测至月落,观测点便有了一个地球直径的位移,可多见月面经度1度的地区。这种现象称为天秤动。 严格来说,地球与月球围绕共同质心运转,共同质心距地心4700千米(即地球半径的2/3处)。由于共同质心在地球表面以下,地球围绕共同质心的运动好像是在“晃动”一般。从地球北极上空观看,地球和月球均以迎时针方向自转;而且月球也是以迎时针绕地运行;甚至地球也是以迎时针绕日公转的。 很多人不明白为甚么月球轨道倾角和月球自转轴倾角的数值会有这么大的变化。其实,轨道倾角是相对于中心天体(即地球)而言的,而自转轴倾角则相对于卫星(即月球)本身的轨道面。在这个定义习惯很适合一般情况(例如人造卫星的轨道)而且是数值相当固定的,但月球却非如此。 月球的轨道平面(白道面)与黄道面(地球的公转轨道平面)保持著5.145 396°的夹角,而月球自转轴则与黄道面的法线成1.5424°的夹角。因为地球并非完美球形,而是在赤道较为隆起,因此白道面在不断进动(即与黄道的交点在顺时针转动),每6793.5天(18.5966年)完成一周。期间,白道面相对于地球赤道面(地球赤道面以23.45°倾斜于黄道面)的夹角会由28.60°(即23.45°+ 5.15°) 至18.30°(即23.45°- 5.15°)之间变化。同样地,月球自转轴与白道面的夹角亦会介乎6.69°(即5.15° + 1.54°)及3.60°(即5.15° - 1.54°)。月球轨道这些变化又会反过来影响地球自转轴的倾角,使它出现±0.002 56°的摆动,称为章动。 白道面与黄道面的两个交点称为月交点--其中升交点(北点)指月球通过该点往黄道面以北;降交点(南点)则指月球通过该点往黄道以南。当新月刚好在月交点上时,便会发生日食;而当满月刚好在月交点上时,便会发生月食; 月球的周期 名称 Value (d) 定义 恒星月 27.321 661 相对于背景恒星 朔望月 29.530 588 相对于太阳(月相) 分点月 27.321 582 相对于春分点 近点月 27.554 550 相对于近地点 交点月 27.212 220 相对于升交点 月球轨道的其它特征 名称 数值 (d) 定义 默冬章 (repeat phase/day) 19 年 平均月地距离 ~384 400 千米 近地点距离 ~364 397 千米 远地点距离 ~406 731 千米 轨道平均偏心率 0.0549003 交点退行周期 18.61 年 近地点运动周期 8.85 年 食年 346.6 天 沙罗周期 (repeat eclipses) 18 年 10/11 天 轨道与黄道的平均倾角 5°9' 月球赤道与黄道的平均倾角 1°32' 人类登月探索: 第一件到达月球的人造物体是前苏联的无人登陆器月球2号,它于1959年9月14日撞向月面。月球3号在同年10月7日拍摄了月球背面的照片。月球9号则是第一艘在月球软著陆的登陆器,它于1966年2月3日传回由月面上拍摄的照片。另外,月球10号于1966年3月31日成功入轨,成为月球第一颗人造卫星。 在冷战期间,美利坚合众国和前苏联一直希望在太空科技领先对方。这场太空竞赛在1969年7月20日第一名人类登陆月球时进入高潮。美利坚合众国阿波罗11号的指令长尼尔·阿姆斯特朗是踏足月球的第一人,而尤金·塞尔南则是最后一个站立在月球上的人,他是1972年12月阿波罗17号任务的成员。参看: 月球宇航员列表 阿波罗11号的太空人留下了一块9英吋乘7英吋的不锈钢牌匾在月球表面,以纪念这次登陆及为有可能发现它的其他生物提供一些资料。 牌匾上绘有地球的两面,并有三名太空人及当时美利坚合众国总统尼克逊的签署。 6次的太阳神任务及3次无人月球号任务(月球16、20、24号)把月球上的岩石及土壤样本带回地球。 在2004年2月,美利坚合众国总统乔治·沃克·布什提出于2020年前派人重新登月。欧洲航天局及中华人民共和国亦有计划发射探测器前往月球。欧洲的Smart 1探测器于2003年9月27日升空,并于2004年11月15日进入绕月轨道。它将会勘察月球环境及制作月面X射线地图。 中华人民共和国亦积极开展探月计划,并寻求开采月球资源的可行性,尤其是氦同位素氦-3这种有望成为未来地球能源的元素。有关中华人民共和国探月计划,见嫦娥工程条目。 日本及印度亦不甘后人。日本已初步订出未来探月的任务。日本的宇宙航空研究开发机构甚至已著手计划的有人的月球基地。印度则会先发射无人绕月探测器Chandrayan。 有关月亮的神话: 在中华人民共和国古代神话中,关于月亮的故事数不胜数。在古希腊神话中,月亮女神的名字叫阿尔忒弥斯,她是太阳神阿波罗的孪生妹妹,同时她也是狩猎女神。月球的天文符号好象弯弯的月牙儿,象征着阿尔忒弥斯的神弓。 月球是地球唯一的天然卫星,是距离我们最近的天体,它与地球的平均距离约为384401千米。它的平均直径约为3476千米,比地球直径的1/4稍大些。月球的表面积有3800万千米,还不如我们亚洲的面积大。月球的质量约7350亿亿吨,相当于地球质量的1/81,月面重力则差不多相当于地球重力的1/6。 月球的轨道运动 月球以椭圆轨道绕地球运转。这个轨道平面在天球上截得的大圆称“白道”。白道平面不重合于天赤道,也不平行于黄道面,而且空间位置不断变化。 周期173日。 月球的自转 月球在绕地球公转的同时进行自转,周期27.32166日,正好是一个 恒星月,所以我们看不见月球背面。这种现象我们称“同步自转”,几乎是卫星世界的普 遍规律。一般认为是行星对卫星长期潮汐作用的结果。天平动是一个很奇妙的现象,它使得我们得以看到59%的月面。主要有以下原因: 1。在椭圆轨道的不同部分,自转速度与公转角速度不匹配。 2。白道与赤道的交角。 月球的物理状况---月面的地形主要有: 环形山 这个名字是伽利略起的。它是月面的显著特征,几乎布满了整个月面。 最大的环形山是南极附近的贝利环行山,直径295千米,比海南岛还大一点。小的环行山 甚至可能是一个几十厘米的坑洞。直径不小于1000米的大约有33000个。占月面表面积的 7-10%。 有个日本学者1969年提出一个环形山分类法,分为克拉维型(古老的环形山,一般都 面目全非,有的还山中有山)哥白尼型(年轻的环形山,常有“辐射纹”,内壁一般带有 同心圆状的段丘,中央一般有中央峰)阿基米德形(环壁较低,可能从哥白尼型演变而来 )碗型和酒窝型(小型环形山,有的直径不到一米)。 月海 肉眼所见月面上的阴暗部分实际上是月面上的广阔平原。由于历史上 的原因,这个名不副实的名称保留到了现在。 已确定的月海有22个,此外还有些地形称为“月海”或“类月海”的。公认的22 个绝大多数分布在月球正面。背面有3个,4个在边缘地区。在正面的月海面积略大于 50%,其中最大的“风暴洋” 面积越五百万平方公里,差不多九个法国的面积总和。 大多数月海大致呈圆形,椭圆形,且四周多为一些山脉封闭住,但也有一些海是 连成一片的。除了“海”以外,还有五个地形与之类似的“湖”----梦湖、死湖、夏 湖、秋湖、春湖,但有的湖比海还大,比如梦湖面积7万平方千米,比汽海等还大得 多。 月海伸向陆地的部分称为“湾”和“沼”,都分布在正面。湾有五个:露湾、暑 湾、中央湾、虹湾、眉月湾;沼有腐沼、疫沼、梦沼三个,其实沼和湾没什么区别。 月海的地势一般较低,类似地球上的盆地,月海比月球平均水准面低1-2千米, 个别最低的海如雨海的东南部甚至比周围低6000米。月面的返照率(一种量度反射太阳光本领的物理量)也比较低,因而看起来现得较黑。 月陆和山脉 月面上高出月海的地区称为月陆,它一般比月海水准面高2-3千 米,由于它返照率高,因而看来比较明亮。在月球正面,月陆的面积大致与月海相等 但在月球背面,月陆的面积要比月海大得多。 从同位素测定知道月陆比月海古老得多,是月球上最古老的地形特征。 在月球上,除了犬牙交差的众多环形山外,也存在着一些与地球上相似的山脉。 月球上的山脉常借用地球上的山脉名,如阿尔卑斯山脉,高加索山脉等等,其中最长的山脉为亚平宁山脉,绵延1000千米,但高度不过比月海水准面高三,四千米。 山脉上也有些峻岭山峰,过去对它们的高度估计偏高。现在认为大多数山峰高度与地球山峰高度相仿,最高的山峰(亦在月球南极附近)也不过9000米和8000米。 月面上6000米以上的山峰有6个,5000-6000米20个,4000-5000米则有80个,1000米以 上的有200个。 月球上的山脉有一普遍特征:两边的坡度很不对称,向海的一边坡度甚大,有时 为断崖状,另一侧则相当平缓。 除了山脉和山群外,月面上还有四座长达数百千米的峭壁悬崖。其中三座突出在 月海中,这种峭壁也称“月堑”。 月面辐射纹 月面上还有一个主要特征是一些较“年轻”的环形山常带有美 丽的“辐射纹”,这是一种以环形山为辐射点的向四面八方延伸的亮带,它几乎以笔直的方向穿过山系、月海和环形山。 辐射文长度和亮度不一,最引人注目的是第谷环形山的辐射纹,最长的一条长1800千米,满月时尤为壮观。其次,哥白尼和开普勒两个环形山也有相当美丽的辐射 纹。据统计,具有辐射纹的环形山有50个。 形成辐射纹的原因至今未有定论。实质上,它与环形山的形成理论密切联系。现 在许多人都倾向于陨星撞击说,认为在没有大气和引力很小的月球上,陨星撞击可能使高温碎块飞得很远。而另外一些科学家认为不能排除火山的作用,火山爆发时的喷 射也有可能形成四处飞散的辐射形状。 月谷(月隙) 地球上有着许多著名的裂谷,如东非大裂谷。月面上也有这种 构造----那些看来弯弯曲曲的黑色大裂缝即是月谷,它们有的绵延几百到上千千米,宽度从几千米到几十千米不等。 那些较宽的月谷大多出现在月陆上较平坦的地区,而那些较窄、较小的月谷(有时又称为月溪)则到处都有。最著名的月谷是在柏拉图环形山的东南连结雨海和冷海 的阿尔卑斯大月谷,它把月面上的阿尔卑斯山拦腰截断,很是壮观。从太空拍得的照片估计,它长达130千米,宽10-12千米。 从何而来?---月球形成之迷 月球是外星人的宇宙飞船:这并非无稽之谈,因为科学的动力就在于大胆的想象,没有创见就不会有新的突破,爱因斯坦提出的相对论当时又何尝不是无稽之谈。而中国人在科学上欠缺的正是这种大胆的创见。 我们为什么总看不到月球的背面 月球总以一个面对着地球.是因为月球的自传和公转周期是相同的.(27.32166日) 要理解这一现象,你可以做一个实验.画一个圆,标出正东西南北方向.你站在圆心(代表地球),再找一个朋友,站在圆上,让他面部朝前(即不扭动脖子),沿着圆逆时针挪动,要求他在沿着圆挪动的时候,保持面部始终朝向圆心,也就是你.那么这样一个过程就基本模拟了月亮饶地球转动的过程. 很明显,在这样一个过程中,你的朋友始终是一个面(前面)面向你.下面理解为什么在这样一个过程中,公转周期等于自转周期. 你的朋友从你的正北方出发,绕着你转动,再一次出现在正北方的时候,他就完成了一个公转周期.(类似于月亮饶地球公转一周的时间.) 下面看看他的自转时间是多少.我们不妨还设定当你的朋友在你的正北位置,面部朝向正南时的姿态为初始姿态..然后我们就可以发现当你的朋友逆时针挪动到你的正西方位置时,他的自转姿态就发生了逆时针90度的旋转.(如果你的朋友在过程中不"自转"的话,那么当他在此位置时,他面向的不是你,而仍然是朝向正南方向.而实际实验时你的朋友在此位置却是朝向正东方向,所以他相对与初始位置逆时针绕自己旋转了90度. 类似地,当他走到你的正南方向时,他相对于初始姿态自传了180度.当他走到你的正东方向时,他相对于初始姿态自传了270度.当他再次走到你的正北方向时,他相对于初始姿态自传了360度.也就是说他完成了一个自转周期. 因为完成一个公转过程就刚好完成了一个自转过程,所以从时间上来看,这个自转周期就等于公转周期.因为在整个过程中,你的朋友总是以身体面部朝向你,也就是说,月亮总是以一个面朝向地球. 广寒宫——月球 每当夜幕降临,一轮明月升上夜空,清澈的月光洒满大地,让人产生无数情思遐想。文人墨客更是对月亮倍加青睐,唐代诗人张若虚的“江上何人初见月,江月何年初照人”,还有宋代文学家苏轼的“明月几时有,把酒问青天”,都可称得上是脍炙人口的咏月佳句。 月球俗称月亮,也称太阴。在中国古代神话中,关于月亮的故事数不胜数。古希腊神话中,月亮女神的名字叫阿尔特弥斯,同时她也是狩猎女神。月球的天文符号好象弯弯的娥眉,同时象征着阿尔特弥斯的神弓。 皓月当空,我们能够清楚地看到它上面有阴暗的部分和明亮的区域。早期的天文学家在观察月球时,以为发暗的地区都有海水覆盖,因此把它们称为“海”。著名的有云海、湿海、静海等。而明亮的部分是山脉,那里层峦叠嶂,山脉纵横,到处都是星罗棋布的环形山。 位于南极附近的贝利环形山直径295公里,可以把整个海南岛装进去。 最深的环形山是牛顿环形山,深达8788公里。除了环形山,月面上也有普通的山脉。高山和深谷叠现,别有一番风光。 月球的年龄,大约也是46亿年,它与地球形影相随,关系密切。月球也有壳、幔、核等分层结构。最外层的月壳平均厚度约为60~65公里。月壳下面到1000公里深度是月幔,它占了月球的大部分体积。月幔下面是月核,月核的温度约为1000度,很可能是熔融状态的。月球直径约3476公里,是地球的3/11。体积只有地球的1/49,质量约7350亿亿吨,相当于地球质量的1/81,月面的重力差不多相当于地球重力的1/6。 月球的形成有以下几个观点。 一.分裂说。这是最早解释月球起源的一种假设。早在1898年,著名生物学家达尔文的儿子乔治·达尔文就在《太阳系中的潮汐和类似效应》一文中指出,月球本来是地球的一部分,后来由于地球转速太快,把地球上一部分物质抛了出去,这些物质脱离地球后形成了月球,而遗留在地球上的大坑,就是现在的太平洋。这一观点很快就收到了一些人的反对。他们认为,以地球的自转速度是无法将那样大的一块东西抛出去的。再说,如果月球是地球抛出去的,那麽二者的物质成分就应该是一致的。可是通过对“阿波罗12号”飞船从月球上带回来的岩石样本进行化验分析,发现二者相差非常远。 二.俘获说。这种假设认为,月球本来只是太阳系中的一颗小行星,有一次,因为运行到地球附近,被地球的引力所俘获,从此再也没有离开过地球。还有一种接近俘获说的观点认为,地球不断把进入自己轨道的物质吸积到一起,久而久之,吸积的东西越来越多,最终形成了月球。但也有人指出,向月球这样大的星球,地球恐怕没有那麽大的力量能将它俘获。 三.同源说。这一假设认为,地球和月球都是太阳系中浮动的星云,经过旋转和吸积,同时形成星体。在吸积过程中,地球比月球相应要快一点,成为“哥哥”。这一假设也受到了客观存在的挑战。通过对“阿波罗12号”飞船从月球上带回来的岩石样本进行化验分析,人们发现月球要比地球古老得多。有人认为,月球年龄至少应在70亿年左右。 四.大碰撞说。这是近年来关于月球成因的新假设。1986年3月20日,在休士顿约翰逊空间中心召开的月亮和行星讨论会上,美国洛斯阿拉莫斯国家实验室的本兹、斯莱特里和哈佛大学史密斯天体物理中心的卡梅伦共同提出了大碰撞假设。这一假设认为,太阳系演化早期,在星际空间曾形成大量的“星子”,星子通过互相碰撞、吸积而长大。星子合并形成一个原始地球,同时也形成了一个相当于地球质量0.14倍的天体。这两个天体在各自演化过程中,分别形成了以铁为主的金属核和由硅酸盐构成的幔和壳。由于这两个天体相距不远,因此相遇的机会就很大。一次偶然的机会,那个小的天体以每秒5千米左右的速度撞向地球。剧烈的碰撞不仅改变了地球的运动状态,使地轴倾斜,而且还使那个小的天体被撞击破裂,硅酸盐壳和幔受热蒸发,膨胀的气体以及大的速度携带大量粉碎了的尘埃飞离地球。这些飞离地球的物质,主要有碰撞体的幔组成,也有少部分地球上的物质,比例大致为0.85:0.15。在撞击体破裂时与幔分离的金属核,因受膨胀飞离的气体所阻而减速,大约在4小时内被吸积到地球上。飞离地球的气体和尘埃,并没有完全脱离地球的引力控制,他们通过相互吸积而结合起来,形成全部熔融的月球,或者是先形成几个分离的小月球,在逐渐吸积形成一个部分熔融的大月球。 月亮成分 45亿年前,月球表面仍然是液体岩浆海洋。科学家认为组成月球的矿物克里普矿物(KREEP) 展现了岩浆海洋留下的化学线索。KREEP实际上是科学家称为“不兼容元素”的合成物--那些无法进入晶体结构的物质被留下,并浮到岩浆的表面。对研究人员来说,KREEP是个方便的线索,来明了月壳的火山运动历史,并可推测彗星或其他天体撞击的频率和时间。 月壳由多种主要元素组成,包括:铀、钍、钾、氧、硅、镁、铁、钛、钙、铝 及氢。当受到宇宙射线轰击时,每种元素会发射特定的伽玛辐射。有些元素,例如:铀、钍和钾,本身已具放射性,因此能自行发射伽玛射线。但无论成因为何,每种元素发出的伽玛射线均不相同,每种均有独特的谱线特征,而且可用光谱仪测量。 直至现在,人类仍未对月球元素的丰度作出面性的测量。现时太空船的测量只限于月面一部分。 天秤动 由于月球轨道为椭圆形,当月球处于近日点时,它的自转速度便追不上公转速度,因此我们可见月面东部达东经98度的地区,相反,当月处于远日点时,自转速度比公转速度快,因此我们可见月面西部达西经98度的地区。这种现象称为经天秤动。

我国目前的航天水平可以登上月球吗?

我国目前我国“微笑计划”SMILE卫星完成初样研制总结,转入正样阶段的航天水平可以登上月球吗?

登上月球其实有多种概念我国“微笑计划”SMILE卫星完成初样研制总结,转入正样阶段,比如无人探测器登陆月球,无人探测器从月面返回,载人登月等,能达到无人探测器登陆月球我国“微笑计划”SMILE卫星完成初样研制总结,转入正样阶段的就已经是凤毛麟角了,这么多年来也就前苏联、美国、中国这几家登陆过月球,当然上列只是各家的第一次登录时间我国“微笑计划”SMILE卫星完成初样研制总结,转入正样阶段

尽管月球是距离地球最近的天体,但对于人类的技术来来说依然是困难重重!后续的载人登月则是到现在为止,只有美国成功实施过载人登陆月球!即使在冷战期间国力顶峰时期的前苏联,在载人登月道路上接二连三的失败,最终放弃载人登月……由此可见登月对于航天技术的掌握可见一斑!就我们中国而言,无人探测的“落”已经完美收官,但在这个“回”的关键时刻成了些胖五的发射失利,后续“回”的计划有些推迟,但各位放心并没有取消,将在分别实施两次无人探测月球计划,并在采样返回!

当然以现在中国的技术,如果不惜代价的话载人登月技术问题并不大,但近地轨道运载能力不足,会使指令舱-服务舱和登月返回舱,可能要分成三次发射再在近地轨道上对接,但这样会造成极大的风险和巨大的成本,一旦失败未来将面临长时间的原因调查与整顿,甚至可能会使后续计划处于停滞状态!在冷战时期疯狂的帽子都没有实施这样的计划,我们根本没有必要在这个上面冒险!在和平时期中国在登月计划上采取保守政策是完全可以理解的!

尽管有一些延迟,但我们要求的是稳!

与中国的登月计划一样,美国人的重返月球计划似乎也不是那么顺利!

钢铁侠马斯克的BFR绕月计划(只绕不登)

中国未来的载人登月计划在CZ-9成功之后自然会提上日程,与月球采样返回的计划差不多时间实施的火星无人探测采样返回计划,都是以CZ-9为前提的,尽管难以了解其进展,但我们相信在这条道路上中国走的是比较稳的!很多时候我们会诟病其保守,但对于跑不了的月球,走得稳一点总比摔一跤总要好哈……

关于嫦娥一号卫星

中国第一颗探月卫星嫦娥1号目前正按计划进行研制。卫星各关键技术已获得突破性进展,初样星的研制工作进展顺利。它将在未来两年内用长征3号甲运载火箭从西昌卫星发射中心发射升空。对于这次世人瞩目的探月行动,业内权威杂志《中国航天》刊载长文,对这次浪漫新奇之旅进行了全方位的解读。

科学与工程目标

中国探月卫星工程有四大科学目标:

一是获取月球表面三维立体影像,从而划分月球表面的基本地貌和构造单元,初步编制月球地质与构造纲要图,为后续优选软着陆区提供参考依据。目前世界上还没有覆盖整个月面的影像;中国如能获取全月面三维影像,对于更好地了解月球的地质构造和演化历史有着重要的意义。中国将争取比国外已有的此类图像做得更完整、更精细。

二是分析月面有用元素含量和物质类型的分布特点,即对月面有用元素进行探测,初步编制各元素的月面分布图。美国已做了5种有用元素的全球性分布与含量,嫦娥1号将探测月面钛和铁等14种可能有开发利用前景的重要元素的分布特点和规律。

三是探测月壤特性。中国将首次开展月面的微波辐射探测,获取月壤厚度的全月分布特征,研究月表年龄及演化,估算月壤中氦3的分布和资源量。目前月球上已知矿物有100多种,其中有5种连地球上都没有。尤其是氦3。它是一种安全、高效、清洁的新型核聚变燃料,可改变人类社会的能源结构,但在地球上十分罕见。每100吨氦3原料足可以解决全球一年的电力供应,而月球上的氦3储量据估算有500万吨,可满足人类1万年以上的供电需求。每克黄金价值11美元,而每克氦3是400美元。月球潜在矿产资源和能源的开发利用前景,已成为各主要航天国家组织重返月球和开展月球探测的最主要动力。

四是探测地月空间环境,将记录原始太阳风数据,研究太阳活动对地月空间环境的影响。

上述前三项工作国外还未曾进行过,第四项为中国首次在地球静止轨道以外获取空间环境数据。

中国探月卫星工程还有五大工程目标:一是研制和发射中国第一颗探月卫星;二是初步掌握绕月探测基本技术;三是首次开展月球科学探测;四是初步构建月球探测航天工程系统;五是为月球探测后续工程积累经验。为此要突破月球探测卫星的关键技术;初步建立中国的深空探测工程大系统;验证有效载荷和数据解译等各项关键技术;初步建立中国深空探测技术研制体系;培养相应的人才队伍。

工程计划表

据透露,嫦娥1号工程于2004年9月以前完成工程总体和各系统的详细方案设计;2005年底完成探月卫星初样产品研制和相关试验;2006年10月前完成探月卫星正样产品的设计、研制、总装、测试和各项试验,完成运载火箭正样投产任务,完成测控和发射场系统技术改造和调试任务,完成地面应用系统组装和调试任务;力争2006年12月发射升空。

嫦娥1号卫星方案具有较好的继承性,设计的功能和技术性能指标满足任务要求;卫星总体与各分系统之间、卫星与各大系统之间接口要求明确,大型试验项目安排及试验方案合理可行;研制技术流程完整,计划流程合理可行;卫星进行了可靠性和安全性设计,可靠性关键项目明确,测试覆盖性分析的项目完整,因此已转入初样阶段的研制工作。

嫦娥1号卫星按方案完成初样试制后,将进入初样试验阶段。初样产品将对设计、工艺和方案进行实态验证,进一步完善方案,为飞行试验产品研制提供全面、准确的依据,为发射星奠定技术基础。

在工程的具体实施上,嫦娥1号工程系统由月球探测卫星、运载火箭、发射场、测控和地面应用等五大系统组成。

日趋稳定的平台

众所周知,人造卫星由卫星平台与有效载荷两部分组成。嫦娥1号也不例外。

该探月卫星的平台以中国已成熟的东方红3号卫星平台为基础进行研制,并充分继承中国资源2号卫星和“中巴地球资源卫星”等的现有成熟技术和产品,进行适应性改造。所谓适应性改造就是在继承基础上的创新,包括突破一批关键技术,例如三维定向技术,即使卫星的太阳能电池板、探测头和传输信息的天线分别时刻对准太阳、月亮和地球。这样一个三维控制系统过去是没有的,技术难度相当高。另外,在地球、月球和卫星三者间进行探月卫星的轨道设计和紫外月平仪的研制等也都需要开展技术攻关。

选用东方红3号卫星平台主要是由于它的高度可靠性。自该卫星平台1997年5月首次投入使用后,中国已用其研制并发射了“北斗”等至少6颗卫星。该卫星平台采用了许多较先进的技术,如全三轴稳定、统一双组元液体推进、公用平台设计、大面积密栅太阳电池阵和高强度轻重量碳纤维多层复合材料等。不过,嫦娥1号的卫星平台比一般人造地球卫星在轨道,测控,制导、导航与控制系统和热控分系统等方面都有自己的独特之处。

目前,中国航天器所到达的距地球最远距离约为7万千米(2003年12月30日发射的探测1号卫星)。而要实现月球探测,须使航天器飞出地球引力场,进入到38万千米远的空间。由于月球以及月球与地球、太阳的相对关系具有其固有的特点,因此嫦娥1号卫星与一般的地球卫星有很大不同,研制并发射月球探测卫星要解决轨道设计,制导、导航与控制(包括对月姿态确定技术),测控与数据传输,星上热控和电源分系统设计等关键技术问题。

预计卫星总重2350千克,本体尺寸2000毫米×1720毫米×2200毫米,采用三轴稳定姿态控制,对月定向工作。卫星在轨运行寿命大于1年。

任务决定载荷

根据中国探月卫星工程的四大科学目标,嫦娥1号选用的有效载荷有6套24件,包括CCD立体相机、激光高度计、成像光谱仪、伽马/X射线谱仪、微波探测仪和太阳风粒子探测器等。其中CCD立体相机是拍摄全月面三维影像的专用相机,在中国属首次使用;成像光谱仪用于获取月面光波图谱;伽马/X射线谱仪用于探测月球表面元素;微波探测仪除用于获取月壤厚度信息外,还能给出月球背面的亮度温度图和月球两极地面的信息。

由激光器、望远镜和接收电路三部分组成的激光高度计,由中科院上海技术物理研究所研制。它在探月卫星的发射阶段和转移阶段都处在“睡眠状态”。卫星进入环月轨道后,激光高度计首先向月面发射激光束,并立刻用望远镜把反射回来的光束变成电信号;接着,接收电路盒将迅速进行精确计算,用最短时间得出该探测点的月球海拔高度。激光高度计完成绕月旅行,月面每个探测点的海拔高度就一清二楚了。这些数值一旦与CCD立体相机拍摄的平面图像相叠加,就是一幅完整而精确的月面三维地形图。只要激光高度计发射的探测点足够密,就能获得覆盖整个月球的地形图,包括人类探月活动从未涉及的月球两极区域。

据探月专家介绍,美国、欧空局、俄罗斯和日本等以前从未在探月过程中使用过可以全天候、全天时工作和具有一定穿透能力的微波遥感技术,所以嫦娥1号上的微波探测仪是世界上首次在探月卫星上装载微波遥感装置,用以实现对月面更为细致深入的探测,并将对所发回的数据进行反演和解析。不过,由于月球远离地球,对月球进行微波遥感探测有很大的技术难度和一定的风险。为确保探测成功和能稳定地发回数据,现正加强对月球微波遥感的地面仿真研究,在借鉴以往经验的基础上做相应的技术改进。

嫦娥1号有效载荷共重130千克。早在2004年1月7日,所有24件仪器就完成了首轮联合测试,结果相当成功。测试表明,探测仪器设计中的一些关键技术问题已基本攻克,并解决了设备间的接口技术。全部探测仪器于2004年9月交付,并与卫星平台一起进行噪声、振动、辐射和真空等各种空间环境的模拟测试。

使用成熟的火箭

按照计划,长征3号甲被选为月球探测卫星的运载火箭,发射场选在西昌卫星发射中心,但要进行必要的适应性改造。

根据设计,嫦娥1号的运行轨道近地点为200千米,远地点为51000千米,属于大椭圆轨道。火箭必须精确地将探测器送入预定轨道,才能准确完成预定探测任务。为满足探月卫星的特殊要求,长征3号甲火箭控制系统增加了单机和线路备份,确保飞行过程中不出现任何偏差,万无一失。

选择长征3号甲主要考虑到它是长征系列火箭家族中发射成功率最高的成员之一。该火箭拥有更灵活而先进的控制系统,可在星箭分离前对有效载荷进行大姿态调姿定向,并提供可调整的卫星起旋速率,具有很强的适应性。它主要用于发射地球同步轨道有效载荷,同时兼顾低轨道和太阳同步轨道等其它轨道有效载荷的发射,也可进行一箭双星或多星发射。

目前执行发射任务的长征3号甲火箭已进入试样研制阶段,部分组件和箭体已开始投产。但由于月球探测器尚处于初样设计阶段,今后研制人员还将根随着探测器研制的深入,逐步对火箭设计进行适应性修改,预计将于两年后出厂。

嫦娥1号发射时间的选择要考虑到光照、太阳入射角、测控条件和轨道限制等因素。发射后,卫星将用8~9天时间完成调相轨道段、地-月转移轨道段和环月轨道段飞行。在经过发射、飞行和进入预定轨道等程序后,如何将探测数据传回地面,是工程的技术难题。

嫦娥1号工程副总设计师龙乐豪说,通俗一点讲,该工程有三大目标,即“到得了”、“转得起”和“传得到”。嫦娥1号从起飞到进入目标轨道将多次经过中国上空。如地理位置和天气条件允许,人们有可能用肉眼观测到现代“嫦娥奔月”的情景。

测控和应用系统

由于旅途遥远,所以测控系统尤为重要。测控系统将以中国现有的S频段航天测控网为主,辅以甚长基线干涉仪天文测量系统组成,并进行必要的适应性改造。

嫦娥1号卫星不仅需要对月球进行全天候的观测,还需要把太阳能电池板始终对准太阳,同时又要把传送天线对准地球。目前,中国在上海佘山和乌鲁木齐分别拥有一个直径25米的天线,但它们只能有4~6小时可用来接收星上信息。为了嫦娥1号计划的顺利实施,中国将分别在北京和昆明设一个直径50米(国内最大)和一个直径40米的天线。这样在我们的国土上,可用4个天线交叉干涉,对近40万千米远的嫦娥1号进行测控,并为应对外界干扰因素和意外因素留有应急的能量。

地面应用系统包括月球探测卫星运行管理中心、数据接收中心以及科学数据处理和研究中心三个部分

嫦娥一号卫星的研制历史

1994年我国“微笑计划”SMILE卫星完成初样研制总结,转入正样阶段,我国航天科技工作者进行我国“微笑计划”SMILE卫星完成初样研制总结,转入正样阶段了探月活动必要性和可行性研究,

1996年完成我国“微笑计划”SMILE卫星完成初样研制总结,转入正样阶段了探月卫星我国“微笑计划”SMILE卫星完成初样研制总结,转入正样阶段的技术方案研究,

1998年完成了卫星关键技术研究,以后又开展了深化论证工作。

经过10年的酝酿,最终确定我国整个探月工程分为“绕”、“落”、“回”3个阶段。

2004年11月19日“嫦娥一号”开始初样研制,“嫦娥工程”进入实施阶段。

2005年年底完成了卫星初样产品的研制和相关试验,

2006年3月,中国探月计划第一颗卫星“嫦娥一号”进入有效载荷正样系统最后联试阶段,以确保科学探测设备将来在太空正常工作。

2006年10月前完成探月卫星正样产品的设计、研制、总装、测试和各项试验,

2007年8月已完成了产品研制,并通过了各项试验考核验证。

苹果id购买.png

上一篇:谷歌账号语音验证异常(谷歌号码不能进行验证 )
下一篇:谷歌账号活动异常申诉(谷歌账号我们检测到此账号中存在异常活动 )

相关推荐

发表评论

◎欢迎参与讨论,请在这里发表您的看法、交流您的观点。