中国电信:全球首次S频段5GNTN技术外场上星实测验证完成

苹果id购买.png

本文目录一览:

5G网络的到来,会让我们的生活发生什么变化

说起5G未来将带给行业和生活的变化中国电信:全球首次S频段5GNTN技术外场上星实测验证完成,不少人都会神秘兮兮的说:”万物互联!”但到底什么是万物互联呢中国电信:全球首次S频段5GNTN技术外场上星实测验证完成

首先,大众对于5G的模糊印象应该就是一个“快”字。高通公司在去年的世界移动通信大会上表示,5G下载的速度峰值可以达到4500Mbps,初始中值速度也有1400Mbps,相当于目前4G网速的大约20倍。

“5G还有三大特征:一是大带宽,能够在人口密集区为更多用户提供更快的传输速度,支撑高清视频、虚拟现实技术用于视频媒体、影音娱乐领域的虚拟和增强现实和游戏场景应用,带动消费升级中国电信:全球首次S频段5GNTN技术外场上星实测验证完成

二是低时延、高可靠通信,主要面向工业互联网、智能制造、自动驾驶、智慧能源等领域,支撑制造业转型升级,高质量发展中国电信:全球首次S频段5GNTN技术外场上星实测验证完成

三是海量物联网通信,主要面向智慧城市、环境监测、智能农业、森林防火等以传感和数据采集、实时解析为目标的物联网领域,提高社会管理效益和增强安全防护能力。

伴随着5G逐步成熟,以5G为代表的移动通信技术有力地推动了人工智能、物联网、大数据、云计算等技术蓬勃发展,将这些人与人通信延伸到人与物、物与物的智能连接,万物互联的5G时代指日可待。

像咱们安徽电信,5G应用已经在有条不紊的进行中:今年2月,中国电信安徽公司在合肥新桥机场打造首个5G机场;3月10日,中国电信黄山分公司成功推出了安徽黄山5G+VR全景智慧旅游直播业务,实现远程360度VR纵览安徽黄山美景;8月15日,安徽电信和本省一家医院联手,开始实施5G远程医疗的服务,利用5G高速率、大带宽、低时延的特性,实现远程诊断、远程会诊、远程手术等操作……

就像前段时间因为一个5G测试视频大火的何同学说的一样,在4G刚来临时,中国电信:全球首次S频段5GNTN技术外场上星实测验证完成我们想象不到现金会被手机支付取代,短视频、直播会这么火爆,那么在5G来临之际,也不要让想象力束缚5G的发展,换句话说,5G商用带来的改变不只是我们传统认知的“手机网速更快了”这么简单,它将极大地影响人类社会的工业生产、生活和娱乐等各个方面,这些变革或许我们现在无法准确预测,但对于不断进化的5G来说,真到了那一天,我们的想象力或许反而会成为最大的限制。

SA的4/5G互操作是通过新增哪个端口实现的,有什么优势

中国电信完成SA方案4G与5G网络互操作验证未来网络协同可期

来源:第一财经

12月17日中国电信:全球首次S频段5GNTN技术外场上星实测验证完成,中国电信宣布,完成中国电信:全球首次S频段5GNTN技术外场上星实测验证完成了业界首个SA(独立组网)方案中国电信:全球首次S频段5GNTN技术外场上星实测验证完成的4G与5G网络互操作验证。此次测试验证中国电信:全球首次S频段5GNTN技术外场上星实测验证完成了5G SA(独立组网)方案中国电信:全球首次S频段5GNTN技术外场上星实测验证完成的可行性,将进一步推动5G设备的成熟和4G设备的完善。

由于5G和4G网络频段和定位不同,5G需要大规模投资,前期基站较少,很难覆盖所有地区。因此,如何与现有的4G网络顺利衔接非常重要。

中国电信称,4G与5G网络协同可以充分发挥5G技术的优势、合理利用4G已有资源,在保证业务能力和用户感知的基础上实现网络投资与价值最大化。

4G是目前移动业务的主要承载网络,技术成熟稳定、覆盖全面深入,能够满足当前移动宽带业务的需求;而5G通过技术创新和新增频谱,支持移动宽带增强、高可靠低时延、低功耗大连接等多种场景。

但是5G投资规模大。在2018年中国移动全球合作伙伴大会上,前海方舟资产管理有限公司董事长、前海母基金首席执行合伙人靳海涛在演讲中指出,未来5G基站量将是4G基站量的2倍,5G网络建设对运营商的投资要求至少是4G的1.5倍。因此,需要4G与5G网络协同。

一通信行业人士告诉记者,“一个手机终端在离开5G网络后到4G网络上也能继续工作,需要两个网络之间有接口和交互。”

中国电信表示,此次测试基于中国电信自主掌控、开放架构的5G模型网,于2018年11月至12月期间顺利完成了4G与5G双向互操作,分别验证了多种4G与5G核心网融合组网方案的互操作功能和性能,包括AMF(5G接入及移动性管理网元)和MME(4G移动性管理网元)之间有N26接口和无N26接口、AMF和MME网元合设和分设等。

中国电信相关负责人告诉记者,目前测试在实验室进行,未来会做外场测试。据记者了解,目前中国移动方面也规划了一系列的外场测试。

4G与5G核心网互操作是SA方案的关键技术问题。

在组网方式上,中国电信是三家运营商中最先明确提出采用SA方案的。根据3GPP规划,5G的网络架构包含有独立的SA和与4G网络结合的NSA两种。在2018年6月发布的《5G技术白皮书》中,中国电信明确提出5G网络将优先选择SA方案,通过核心网互操作实现4G与5G网络的协同。

中国电信表示,SA方案可基于目标网络支持网络切片、边缘技术等5G网络新特性,同时避免频繁的网络改造,

40万基站!电联共建全球最大5G SA网络

6月28日至7月1日,2021世界移动通信大会如约而至。在6月29日举办的5G共建共享峰会上,中国电信5G共建共享工作组总经理张新表示,从2019年9月份全面启动5G网络共建共享工作以来,中国电信与中国联通已经建成全球规模最大5G SA共建共享商用网络。这不仅对中国 社会 发展、经济推动以及全球运营商都产生了强烈的反响,而且在全球通信行业发展史上也是史无前例的。

5G共建共享之三大挑战

张新指出,中国电信与中国联通是全球Top 10的运营商,对于体量如此之大的两家运营商来说,尽管双方资源有很强的互补性,但面对无现成经验可循、无标准技术方案、无成功案例可鉴的困难和挑战,要取得5G网络共建共享的成功,需要面对和解决以下三个问题。

首先,是网络管理的复杂性。作为全球两个用户体量亿级的运营商来说,在幅员辽阔的中国,开展全量的5G共建共享,需要面对双方网络在资源现状、规划目标、建设流程、维护标准、优化策略等方面的差异,需要考虑如何高效的组织重构流程、协同管理等问题。

其次,网络技术具有不确定性。5G网络要同时满足两家运营商的建网需求和用户感知,必须在技术标准、网络演进、用户策略等方面协调一致,这在全球没有成熟的案例可以借鉴,也是需要技术攻关和创新解决的问题。

最后,是网络运营的挑战性。中国电信和中国联通已经开通运营超过40万个5G共建共享基站,如何在共建共享网络下解决双方网络数据的可视可管,资源的高效公平调度,确保互信等问题,都是共建共享网络运营过程当中需要解决的难题。

5G共建共享之迎难而上

面对复杂的网络协同管理问题,中国电信与中国联通一方面成立了跨运营商的项目团队,组建了集团、省、市三级共建共享专职机构,共担5G的规划、技术、机制、协调和监督等职责,创新了共建共享管理组织机制。

另一方面,优化流程重构,双方求同存异,重塑流程,按照统一规划、分区建设、协同维护、联合优化的原则,共同制定规划、建设、维护、优化等系列流程,推动了"规、建、维、优"的端到端协同,充分发挥了双方资源禀赋,实现了规模、带宽、速率的翻倍,客户感知领先。

5G共建共享之技术创新

在技术创新方面,张新表示,网络共建共享的重要前提是要保证双方业务的独立性。中国电信和中国联通经过大量的技术验证,采用了接入网共享的技术方案,避免对双方核心网的大量定制和改造,满足了逻辑端到端的可控可管与快速部署的网络要求,实现了物理一张网,逻辑两张网的5G共建共享的网络架构。

同时,由于5G商用初期SA网络和终端的产业链还未成熟,中国电信与中国联通考虑到双方4G网频率的策略,网络复合,设备厂商差异,以及用户体验,工程进度、维护难度等因素,并经过反复的技术论证和外场实验后,在全球率先提出NSA接入网共享的单锚点方案、双锚点方案,锚点让度及锚点优先等系列的共享方案,推进双方NSA向SA快速平滑演进的过渡技术方案。据张新介绍,该方案可根据现网负荷和用户需求,满足不同业务场景下的要求,实现了初期NSA与SA并存,后期SA独立组网的技术要求。

据张新透露,在SA网络演进过程当中,双方突破了用户数据迁移、用户自动默开、SA VPDN、终端与网络关键参数兼容等SA一系列的演进关键技术难题,保障了整个网络演进过程当中的平稳高效,用户体验不受影响。

一是创新了用户数据迁移的方案,实现了单个用户数据动态迁移5G网络,避免了海量用户数据一次性迁移的巨大风险,而且节约了上亿元的数据迁移定制网元的费用,不仅降低了5G用户迁移的成本,而且实现了用户不换卡不换号使用5G的需求。

二是创新语音回落方案,语音业务是影响用户感知的最基础的业务,在VoNR具备商用能力之前,面对双方3G/4G语音承载网络的不同,QoS策略配置不一致等问题,双方制定了语音配置的技术策略方案,使双方用户平滑回落到各自的网络,确保双方用户语音业务感知不受影响。

三是创新频率解决方案,中国电信与中国联通提出了室外共享200M,室内共享300M的方案,根据用户需求和网络负荷,按需灵活配置,独立载波和共享载波方式,达到了全球C-BAND商用网络下单用户2.7Gbps的峰值速率。

此外,中国电信和中国联通还攻克了软硬件设备的核心技术能力。

一是双方联合上下游企业,突破了200M大带宽高集成中频芯片,3.5G GaN大带宽的功放滤波器等关键元器件的技术瓶颈,推动了中频段大带宽设备的标准与产业链的成熟。

二是针对3.5GHz扇形覆盖受限的问题,双方创新提出5G超级上行技术,并纳入了R16的核心标准。通过3.5GHz和2.1GHz的频率协同,实现了网络容量覆盖性能的提升。

三是面对各行各业的个性化定制网络需求,创新提出预留PRB资源的切片方式,实现了无线资源在不同切片间灵活的隔离和共享,确保了高保障性的SLA的交付。

5G共建共享之运营创新

面对网络运营的困难和挑战,中国电信与中国联通以三大举措积极应对。一是双方创新打通了电联网管的双北向接口,使双方网络配置参数可视可查,保证基础数据与资源信息共享,实现了信息互通。二是开创性引入了区块链技术,利用其去中心化、防篡改、可追溯等特性,通过关键参数上链存证、工单双向确权赋能、智能合约调度等产品应用,确保共享网络可管可信,资源的公平高效调度。三是面对5G高耗能问题,构建了5G基站AI大数据智能节能平台,解决了全网性、跨厂家、跨4G/5G协同的统一基站智能节能难题,使5G基站的综合节能效率达到了15%以上。

演讲最后,张新表示,经过两年的创新和实践,中国电信和中国联通快速建成了一张覆盖全国所有城市的5G优质网络,为两家5G业务发展提供了强有力的网络基础保障。但张新坦言,仍然有很多问题需要 探索 和研究,例如共享网络环境下,如何更灵活的满足ToB应用需求,实现端到端切片的能力;如何区块链赋能,共享网络技术与运营;如何构建多方互信机制;如何多频段高效能的同池化,快速实现2G/3G/4G的频谱重耕。

“希望借助GSMA平台与运营商、制造商以及其他行业合作伙伴,继续深入研究共享网络的技术、运营、演进。”张新如是说道。

再来一个科普:1G到5G

6月6日,中国5G商用牌照已经正式发放,花落四家机构。值此值得纪念的时刻,给大家分享一篇有关5G的科普文章。

一、电磁波

要说5G,不懂点电磁波是不行的。提问:仙人掌能防电脑辐射吗?知道答案的大盆友直接看后半篇,下面这段写给小盆友。

日常生活中,除了原子电子之外,剩下的几乎全是电磁波,红外线、紫外线、太阳光、电灯光、wifi信号、手机信号、电脑辐射、核辐射,等等。只要是波,就逃不过三个参数:波速、波长、振幅。电磁波的速度是恒定的光速,因此只需考虑:波长(或频率)、振幅(不考虑方向),其中 频率对于电磁波来说,尤为重要。

频率越高,对应着电磁波的波长越短,能量越高,衰减越快,穿透性越差,散射越少,对人体伤害越大。就着这个原则,咱从头到尾捋一遍。

长的电磁波波长能到 1亿米, 频率3Hz,1秒钟三个波,如果用来通信的话,等你一句话说完,就可以过年了。

稍微正常点的电磁波, 波长几万米, 用这通信,就一个字:稳!江河大山都挡不住,甚至能穿透几十米深的海水(海水导电,是电磁波的克星)。不过就这点频率,只能勉强携带点信息,发一个hello,大概需要半小时,也就比写信稍微强点。因为超长波实在是稳,一般用在岸台向潜艇单向发送命令。

再短点, 几十米波长的电磁波, 频率就到了百万赫兹MHz级别,能携带的信息就很可观了,一句话至少能说利索了。而且照样还能跑很远,几百公里不在话下,所以收音机广播、电报、业余无线电一般用这个频段。

说点有用的,假如你困在荒岛上,有个飞机路过,赶紧用121.5MHz呼救,这是民用紧急通信频率,还有个军用紧急通信频率243MHz,这些都是不加密的公共频率。上次解放军和台军战机对峙,双方用这个频率对话,结果被无线电爱好者录下来放网上了,吃瓜群众喜闻乐见之余,又担心我军通信太容易被破解,真是阿弥陀佛了。

波长再短点, 到了1米~1厘米, 就有意思了。一方面,虽然衰减已经很明显了,但一口气还能跑个百十公里,够用;另一方面,频率到了GHz级别,能携带足够多的信息,不但话能说利索了,还有多余功夫让你加个密什么的。所以这个波段是通信的焦点,什么1G2G3G4G,什么卫星通信雷达通信,全在这,统称微波通信。

到了毫米级, 电磁波就跑不了多远了,虽然毫米波不太发散,但很容易被周边物质吸收或反射,几乎没啥穿透性,用来通信很鸡肋,不过用在导弹导引雷达或微波炉上棒棒的。但,毕竟频率超过了30GHz,携带的信息量实在太馋人,要不还是试试吧!于是,5G来了。

5G同志先等等,继续往下数,来到 微米级。 毫无疑问,能携带的信息量继续倍增,但波长0.7微米的电磁波就已经是可见光了。可见光都见过吧,别说穿墙了,一张纸都够呛,想接着按照7G8G9G的套路肯定走不通啊。然后,就有了激光通信,发射端和接收端必须瞄得准准的,中间还不能有阻挡,这优缺点自个儿体会体会。

波长到了0.3微米, 也就是300纳米,先别管频率的事了,这玩意儿就是我们熟知的紫外线,终于对人体有害了。太阳光里的紫外线大约占了4%,如果你一天能晒上半小时太阳的话,那么前面提到的那些电磁波辐射基本可以无视了(不要钻电磁共振的牛角尖,咱只说普遍情况)。

波长200纳米的紫外线, 在太阳光中几乎是没有的,所以在阳光太强时,紫外线通信就成了激光通信很好的补充,不但隐蔽性更好,还不用对得那么准,在几公里的距离上非常好用,是近些年军事通信的研究热点。

接下来就和通信无关了, 波长到了纳米级就成了X光, 就是在医院见到的那种,这么说的话,X光其实也能叫纳米技术(这是玩笑)。

最后, 波长短到了0.01纳米以下,这就是闻之色变的伽马射线, 来自核辐射,全宇宙最强的能量形式之一!若是要毁灭一个星系,伽马射线是不二之选。实际上,科学家一直怀疑,超新星爆炸产生的伽马射线爆已经毁灭了绝大部分的宇宙文明,好在太阳系处于比较角落的地带,周边恒星不多。

终于说完了波长频率,那振幅呢?连仙人掌能不能防辐射都不知道,也就没必要了解振幅的含义了,直接跳过。

二、1和0

回到微波通信。

为什么频率越高,能携带的信息就越多?以数字信号为例,信息就是一串串的1和0,所以先搞清楚怎样用电磁波表示1和0。

第一种方法叫 “调幅”, 基本思路是调整电磁波的振幅,振幅大的表示1,振幅小的表示0,如下图。收音机的AM就是调幅,缺点颇多。

第二种方法叫 “调频”, 基本思路是调整频率来表示1和0,比如,用密集的波形表示1,疏松的波形表示0。收音机的FM就是调频,优点多多的。

很显然, 在单位时间内,发出的波越多,能表示的1和0就越多,换句话说,频率越高能携带的信息就越多。

这样算起来,频率800MHz意味着每秒产生800万个波,都用来表示1和0的话,1秒钟可以传输100M数据,这速度很快啊!为啥我们感觉不到呢?

古语有云,重要的事情说三遍,通信也是如此。无线电跋山涉水,弄丢几个1,0太正常了,防止走丢的土办法就是抱团。比如,用一万个连续的1表示一个1,哪怕路上走丢了两千个1,最后咱还能认得这是1。

这种傻办法只能用在民用通信,因为特征太明显,很容易被破解。还记得北斗民用信号被破解的新闻吧,原因就在此。

民用信号只要能和其他信号区分开就行,不会弄得太复杂,不然传输效率太低。按2G技术那样,800MHz的频率,传输数据大不过每秒几十K。

军用就两码事了,为了防止被破解,要用很复杂的组合来表示1和0,中间说不定还有很多无效信息,各种跳频技术扩频技术,还不停变换组合,总之越花哨越好。所以同样一句话,军事通信要用掉更多的1,0,因此为了保证传输效率,军用频率就比民用高很多。

就目前来说,顶级破解技术还干不过顶级加密技术,这里不包括尚未成熟的量子通信。

军事对抗是无止境的,干不过也不能认怂!那怎办?既然弄不清楚你的1,0,那我就索性再送你一堆1,0,把你原有的组合搞乱,让你自己人都懵逼。这就是电子对抗的环节,跑题了,还是说回5G。

三、关键技术

前面说的,都是不值钱的原理,下面看看值钱的技术。5G关键技术有一堆说法,咱给粗暴地归个类。

振荡电路插个天线就可以产生电磁波,用特定方法改变电磁波的频率或振幅,变成各种复杂的组合,这个过程叫 调制。 对应的,竖个天线就能收到空中的电磁波,按预定方法变回1,0,这个过程叫 解 调。

把电磁波发到空中,或者把空中的电磁波收下来,都需要天线,别以为现在手机光溜溜的就不需要天线了。手机与手机是无法直接通信的,而是通过周边的基站与别的手机联系。于是,问题来了,5G使用的毫米波在空气中衰减非常严重,但又不能无限制提高发射功率,怎么办呢?只能在天线上做文章了。

5G的第一个关键技术: 大规模多天线阵列。 大白话就是,增加天线的数量,不是增加一个两个,而是几百个。这个思路很好理解,但是呢,用那么多天线发射同一个信号,稍不留神就乱成一锅粥。

多天线加毫米波,对比原先的少天线加厘米波,无线电传播的物理特征肯定不一样,得重新建立信道模型。那信道模型怎么建立呢?相信我,你不会感兴趣的。

天线一多,不但能解决毫米波衰减的问题,传输效率、抗干扰等性能也是蹭蹭涨,算是5G必须课。

曾与华为齐名的大唐电信于2015年率先发布了 256大规模天线, 引爆全球通信业,一时风光无限!可惜后来突然闪崩,沦落到卖科研大楼求生,令人唏嘘!

基站天线搞定,下面就轮到终端机的天线了,这货也有术语: 全双工技术。

一般手机的通信天线只有一个,收发信号交替进行,费劲的很!全双工技术,就是把发信号的天线和收信号的天线分开,收发信号同时进行,优点就不说了。不过,这很难吗?

你想想,把话筒和音响挨在一起,还要求两者能正常工作,你说难吗?大体上分两个思路,其一,物理方法,比如在俩天线之间加屏蔽材料;其二,信号处理,比如无源模拟对消等。

2016年4月华为宣布已于成都5G外场率先完成第一阶段5G关键技术验证,测试结果完全达到预期。其中两个重要验证就是大规模天线技术和全双工技术。

天线搞定了,再来就是 "新多址接入技术", 这词听着真拗口,别急,马上就顺了!

举个例子(数字是胡诌的):

假设手机基站用100Hz表示1,105Hz表示0,这时又接进一个新电话,那新电话的1可以用110Hz,0用115Hz,如果再来新电话,依次类推。这就是1G的思路,简称 FDMA。

这样2个电话就用掉了从100Hz到115Hz的频段,占用的15Hz就叫带宽。外行也看出来了,这路子太费带宽了。好在那会的手机只是传个语音,数据量不大,但也架不住手机数量的增加,很快就不够用了!

换个思路,大家都用100Hz表示1,105Hz表示0,但是第1秒给甲用,第2秒给乙用,第3秒给丙用,只要轮换的好,5Hz的带宽就够3个手机用,就是延时严重点而已。这就是2G的思路,简称 TDMA。

再到后来,数据量越来越大,2G也玩不转了。不过,只要有需求,就不怕没套路:在各自的信号前面加上序列码,再揉成一串发送,接收端按序列号只接受自己的信号。就好像快递员一次性送了一叠信过来,大家按照信封上的名字打开各自的信。这就是3G的思路,简称 CDMA。 如我这把年纪的人,应该都被联通的CDMA广告轰炸过吧?

再发展就是正交频分多址技术,把2个互不干扰的正交信号揉成一串发送。所谓正交信号,和量子力学的叠加态有点类似。把信号叠在一起发送,就是4G的思路,简称 OFDMA。

每个终端在网络上都有一个地址,所以这种让很多手机一起打电话的技术,从1G到4G,统称:多址接入技术。咱5G特别时髦,叫“新多址接入技术”,这货怎么个“新”法呢?

稀疏码多址接入、非正交多址接入、图分多址接入……好吧,我承认有点云里雾里了,总体思路就是叠加更多信号或者把前面的技术混到一起,这里涉及大量的数学知识,奉劝各位好自为之吧!

暂时就说这么多吧,5G要实现10Gb/秒的峰值速率、1百万的连接数密度、1毫秒的时延,必须要先解决这三大关键技术。

2016年4月,华为的第一阶段 “关键技术验证”, 主要也是验证这仨技术。新多址接入采用滤波正交频分复用、稀疏码多址接入、极化码,结合大规模天线,吞吐率提升10倍以上,在100MHz带宽下,平均吞吐量达到3.6Gb/秒;全双工采用了无源模拟对消、有源模拟对消和数字对消三重对消框架,可以实现113dB的自干扰消除能力,获得了90%以上的吞吐率增益。

2017年6月,华为完成第二阶段 “多种关键技术融合测试及单基站性能测试”, 在200MHz带宽下,单用户下行吞吐率超过6Gb/秒,小区峰值超过18Gb/秒,配套业内首个小型化5G测试终端,单个5G基站可同时支持上百路超高清4K视频。

2018年9月,华为完成第三阶段 “基于独立组网的5G核心网关键技术与业务流程测试”。

这三个阶段测试,华为均以100%通过率顺利完成。

除了三大关键技术之外,无数用户要组成网络,事情自然少不了。比如,分配传输资源和指挥交通一样让人头大,一条道路分配不合理,半个城市就得跟着瘫痪,所以,华为完成关键技术验证后,又花了2年时间才进行独立组网测试。再比如,能耗不能太离谱,价格不能高上天,诸如此类的基本要求。

四、又是芯片

可以看到,5G要处理的数据量远大于4G,所谓数据就是1,0,但凡涉及1,0的东西,基本都用芯片。控制电磁波发射要用射频芯片,编码解码要用基带芯片,等等,这些也属于5G核心关键技术。

2019年1月24日,华为发布了全球首款5G基站核心芯片: 天罡, 以及,全球首款单芯片多模5G基带芯片: 巴龙5000。 既然是世界首款,免不了拿下N个全球第一。

把条件放宽到调制解调芯片,玩家就比较多了。5G的主流频率是28GHz,有能力处理这个频段的芯片,目前是4家。

高通是最早的,三星是唯一做到39GHz的,华为是工艺最先进的,英特尔是哪里都不掉队的,台湾联发科据说马上也要来了。

多说一句,华为2018年2月发布的这款巴龙5G01芯片,因块头太大无法用在手机上,2019年1月就推出了手机使用的巴龙5000,同时还没耽误手机处理器芯片麒麟和服务器芯片鲲鹏,这进展还是不错的!

五、标准

5G涉及的技术实在太多太杂,得订个规矩。立规矩的重要性不比技术研发低,待会你看看欧盟就明白了。

5G标准第一阶段的第一部分已于2018年6月完成并发布,标志着首个真正完整意义的国际5G标准出炉,剩余部分陆续到2020年才能完工。

这次标准发布一共有50家公司参与,中国有中国电信、中国移动、中国联通、华为、中兴、大唐电信等16家,美国8家,欧洲8家,日本13家,韩国5家。

从数量上看,咱还是不错的。从质量上看,咱应该也还是不错的。举个例子:

在信道编码问题上,欧盟一直用Turbo码,美帝高通习惯用LDPC码,华为擅长用Polar码。于是,第一回合欧盟就被干掉了,不但积累的Turbo技术打了水漂,还得重新学LDPC和Polar。

华为和高通继续交锋了两轮。

信道编码分“控制信道编码”和“数据信道编码”,高通的方案是两者都用LDPC码,华为的方案是数据信道用你家的LDPC码,控制信道用Polar码。

然后,联想对华为的方案投了反对票……

当然,联想的投票对结局毫无影响。因为分歧过大,当天只确定数据信道用LDPC码,至于控制信道择日再议。

等择好日,再次投票时,高通、三星、英特尔、爱立信等巨头搜罗了31家公司组成阵营,要求全部用LDPC码,华为则组织了包括联想在内的55家公司力争。最终, 华为Polar成为控制信道编码,高通LDPC成为数据信道编码,大家平分秋色。

这事被翻出来后,联想引起众怒,但华为很贴心地帮着解围。

顺便说个常识:行业标准都还没全出来,5G离全面成熟应用还是有一段路的。

六、场景和意义

因为担心小盆友的想象力不够,所以国际电信联盟召开的ITU-RWP5D第22次会议,确定了5G的三个应用场景:

这图画得实在太差,解释一下:三个角上的三句话是5G的三大功能特点,蓝色小块是应用场景,小块越靠近哪个角就说明对这个功能的依赖越大。后来,这三个角又改成了四个: 连续广域覆盖、热点高容量、低功耗大连接、低时延高可靠……

说晕了,还是本僧用大白话总结一下吧。

就技术而言,5G就三句话: 网速快、信号广、延时少。 但技术带来的改变却超越了想象力,5G是全信息化的基石,完全可以实现当年物联网吹过的牛: 万物互联。

如果非要找个参考的话,可以想象一下:把2G3G4G去掉,回到大哥大时代……不认识大哥大的00后小盆友,可以问问身边的80后老爷爷。

我觉着,5G与4G的差异,比得上4G和1G的差异。

怎么样?懂了不?

未来的5g时代是什么样的

未来的5g时代是什么样的

未来的5g时代是什么样的,对于网络的使用其实已经成为了我们生活中不可缺少的部分,很多方面都是需要依靠网络来进行的,现如今5g也活跃于各大平台当中,以下未来的5g时代是什么样的。

未来的5g时代是什么样的1

要说这个5G,就先得了解一下什么是电磁波。

电磁波

日常的生活中,除了原子电子以外,剩下的几乎都是电磁波;红外线、紫外线、可见光、手机信号、这个辐射那个辐射的,等等。只要跟波有关的,就会有是三个参数:波速、波长、振幅;电磁波的速度是恒定的,也就是常说的光速。那就只有两个变值:波长跟振幅了;在振幅不考虑方向的情况下受影响的就剩下波长了,也就是常说的频率,这个频率对波长来说太重要了。

频率越高,波长就越短,能量也就越高,如微波炉;衰减速度快,穿透性差,散射少,对人体伤害大。这是电磁波的基本规则。我们先记到小本本上。

电磁波的分类

一个长的电磁波波长有上亿米的,频率3HZ,也就是1秒钟3个波,用在通讯上的话,讲一句话估计要一年之久。

一艘潜艇在海底通行,它用什么频率来通讯呢?这个电磁波的波长得在几万米,用这通讯才能保证稳定性,能穿过山河,还能穿透几十米深的海水(海水导电,是电磁波的克星)。不过频率呢实在是低,携带的信息含量有限。发个称呼都要半个小时。

收音机、广播、电报呢这些通讯的波长还要短些,大概几十米长的样子,频率一般在百万赫兹级别MHZ,距离也能跑个几百公里远,这个就比潜艇的强多了,说话利索了,信息的含量还是不错的。

嗯,告诉你个求生的办法,如果你被丢到一个荒岛上,如果你刚好有台胡救机,民用的紧急呼叫频率是121.5MHZ;还有一个军用的是243MHZ,这个是不加密的公共频率。周边几百公里范围内都可以收到的。之前弯弯跟兔子的军机在海峡相遇,就是用的这个频率对话,结果被无线电的爱好者录了下来放到网上,成了网民近距离接触战斗一线的一个乐趣。

这个波长再短一点,就1cm—1M的范畴了,这个范围就特别的好玩了。第一个就是这个衰减还不是特别的弱,电磁波也还能跑个百十公里来着;第二个就是这个频率到了GHZ的范围了,信息的含量是成倍数的增加啊,不但说话利索了,还能进行加密啥的。所以这个波段是通讯的关键,像1G2G3G4G、卫星通信、雷达通信都聚在这儿。全称:微波通信。

在往下就是毫米波了,这个电磁波衰减的厉害,虽然不是很发散,但是很容易被周围的物质反射或者是吸收,没什么穿透性,用来通讯实在是很烂,可架不住信息含量大啊,频率都超过了30GHZ了,别说用来通话了,你就是用来多点实时视频通讯都没问题啊。于是,5G来了。

再往下就是微米了,这个信息含量增加是没毛病的,但是波长到0.7微米就属于可见光了。可见光用在通讯上难度就太大了,想搞7G8G就不行了,这个套路走不下去了,没办法,穿透性不行。于是就有了激光通信,嗯,发射点跟接收点必须瞄准,中间还不能有阻碍,这个就是光纤了。

电磁波的频率

波长在往下走,到0.3微米也就是300纳米了,到了这个境地,就是属于紫外线了;这个终于到了对人体有害的地步。太阳光里的紫外线占比达到了4%左右,如果下次还有人跟你说通信信号对人体有害的话,你就让他不要晒太阳算了,通信信号的辐射对比电磁波辐射几乎可以无视了(电磁共振除外,那个一般人也接触不到)。

波长在200纳米的紫外线,这个在太阳光中几乎没有。在太阳大的时候就可以做激光通信的补充了,隐蔽性不是一般的强,而且传递性不错,用做军事用途是杠杠的啊。

再往下波长到纳米级别了,这个在生活常见的就是医院的X光了,这东西穿透性超强,当然了,用在通信上是不可能的了。

再往下的话就是0.01纳米了,这个就不敢惹了,伽马射线,来自于核辐射,宇宙已知的最强能量形式之一!如果说要毁灭一个星球,伽马射线是不错的选择。实际上,现在的科学家一直在怀疑,超新星在爆炸的时候产生的伽马射线毁灭的了大量的宇宙文明,而地球只是因为在角落里,所以逃过一劫。

这个波长我们都了解完了,下面我们回到微波通信。

为什么频率越高,携带的信息就越多呢?我们知道信息的传输方式就是用一串的1和0来表示的,所以电磁波也不例外。

第一种方式就是“调幅”,用大白话来说就是调整电磁波的振幅,振幅大的表示1,振幅小的表示0;应用较多的就是收音机上面的AM调幅,就是这个办法,缺点不是一般的多。

第二种方案属于“调频”,方法就是调整频率,比如用密集的频率来表示1,用松散的频率来表示0;收音机里的FM调频就是这个方案,优点比AM多多了。

显然,在单位时间内,发出的波越多,能表示的1和0就越多,或者说,频率越高,携带的信息就越多。

理论上这样算的话,频率在800MHZ的频率上每秒产生的800W个波都来表示1和0的话,1秒钟就可以传输100M的数据呀,这速度这么给力,为啥我们没用到呢?

这个就不得不提损耗了,通信是需要跨越千山万水的,中途丢失一些1和0不是很正常的事嘛,而我们的科学家为了防止信息失真,所以就让这群1和0抱团了。比如用1千连续的1表示1,这样哪怕路上丢了一半咱还是能认出来不是。这种办法一般用在民用通信上,因为特征很明显好认。很容易被破解。现在我们回过头来看说民用的北斗卫星信号被破解了,这个也就见怪不怪了。

民用的信号毕竟是大众普遍用的,只要能和其他的信号区别开来就行了,不会弄得特别复杂,不然的话传输的效率太低了。像2G技术那样,用的是800MHZ的频率,每秒传输个几十K。

如果是军用的话就得另说了,这个为了防止被破解,用了一堆超级复杂的组合来表示1和0,中间还夹带着一堆无用的信息,各种跳频扩频技术,还要变换各种组合,反正就是一堆乱整,看谁能先绕晕谁。所以就造成一种现象,同样是一句问好,军用的通信用掉的1和0比民用的多N个倍数级,而为了保证传输的效率,军用的频率比民用的高N个级别。

就目前来说,顶级的破解技术是干不掉顶级的加密技术的,更别说现在逐渐成熟的量子通信技术了。

这个军事对抗既然干不过那咋办呢?认怂是不可能认怂的,怎么办?既然干不过那就索性给你加点料,再送你一堆的1和0,把你的原有组合搞乱,让自己人都一脸懵逼,这个就是军事上常说的电子对坑了。

额,咱们是不是跑题了啊,言归正转,继续说5G。

前面提的,都是通信的基本原理,下面在说说一些关键的技术。5G的关键技术是有一堆说法的,咱们先来个简单的归类。

三大关键技术

震荡的'电路中咱们插个天线就可以产生电磁波,用特定的方式改变电磁波的频率或者是振幅,组成各种复杂的组合,这个过程就叫做调制。相应的,竖个天线咱们就能接收到空中的电磁波,按照特定的方法就可以变回相应的1和0,这个过程叫做解调。

把电磁破发射到空中,或者把空中的电磁波收到,都是需要天线的,我们的手机也是一样要用到天线。手机与手机之间是无法直接进行通信的,而是通过周围的基站与别的手机进行联系的,而问题是现在的5G通信使用的是毫米波,在空气中衰减的比较严重,但是呢,毕竟是民用的,不能无限制的提高发射的功率,咋办?就只能在天线上想办法了。

5G的第一个关键技术来了,大规模天线矩阵阵列。

简单点说就是增加天线的数量,一个两个不行,咱就一次性来个几百个天线。这个思路好理解,不过也有一个麻烦,就是同时用这么多天线发射一个信号,一个不留神就是乱成一团乱麻。

多天线加毫米波,对比原来的少天线加厘米波,这个无线电传输的物理特征就不一样了,的重新建立一个新的信道模型。这个模型怎么建立呢?额,字幅有限,还是交给各路大神把,这里就不细表了。

天线多了,不但毫米波的衰减问题解决了,传输的效率、抗干扰的性能也是杠杠的,这个属于5G的必修课了。

想当年在下间接供职的大唐电信在2015年发布的256大规模天线,可是在全球通信行业甩下一颗核弹啊,一时间风光无限好!可惜后来没跟上节凑,沦落到靠卖科研大楼求生。

现在基站的天线是搞定了,该动手解决终端的天线问题了,这个就得靠一个全新的技术:全双工技术。

一般的手机通信天线只有一根,收发信息是交替着来的,等于就是一个人既要收信息也要发信息,效率有点低。全双工技术,就是把发信息的天线跟收信息的天线分开来,收信息跟发信息同时进行,这优点就不说了,不过实现起来就不是一般的难了。

想象一下,把发信息的话筒跟收信息的音响挨在一起,还让他两正常的工作,你说难不难?解决的方案大体上分为两个,第一个就是物理解决,在两根天线之间加一堵墙,将两个隔离开来,主要用的是屏蔽材料;第二个就是技术方案了,对信号进行处理,比如无源模拟对消等方法。

这两个5G关键技术华为在2016年就完成了,2016年华为官网宣布在外场完成5G第一阶段关键技术验证,其中两个重点测试的就是大规模天线技术和全双工技术。

现在天线搞定了,下面就该是“新多址接入技术”了,这名字一看就晕晕乎乎的,别急,等慢慢道来。

假设基站将100HZ用来表示1,用105HZ来表示0。这个时候,又来了一个电话,那这个新的电话的1就得用110HZ来表示,0用115HZ来表示了;以此往下推。这个就是1G网络的概念。简称FDMA

这个缺点是很明显的,两个电话就占了100-115HZ的频段,这个占用的频段就叫带宽。就是个外行的也看的出来啊,这东西太占带宽了。好在那个时候的带宽就是打个电话,如果要发个信息啥的得要老命了,慢慢的大家都看到好处,用的人多起来了 ,这个就很快不够用了。咋办?升级呗。

换个方式,咱用100HZ表示1,用105HZ表示0,但是这个第一秒咱给A客户用,第二秒给B客户用,第三秒给C客户用,这样轮换这来,从技术层面上来说,就5HZ就够三个人用的了,只是有点延迟而已。这个就是2G的概念了,简称TDMA。

在到后来,用的人是越来越多,2G网络也满足不了需求。市场告诉我们,哪里有需求哪里就有生产力;继续玩套路,在每个客户的信号前面加个序列码来表示客户的信息,在将系列码跟客户的信息一起发出,这样接收方就只需要接收对应自己的序列码信息就可以。这个就像以前送信的大爷送信一样,手里拿着一摞的信封,叫到谁的名字谁上前拿就是了。从此以后,每个手机都有各自相对应的序列码了,这个就叫3G网络,简称CDMA。

再发展下去就是正交频多址技术,把两个互不干扰的正交信号揉成一团发出。这个正交信号,和量子力学的叠加态有点类似。把信号进行叠加然后一起发出,这个就是4G的思路,简称OFDMA。

每个终端在网络上都有一个唯一的地址,所以这种让很多的手机一起打电话的技术,可以从1G用到4G,统称为多址接入技术。5G当然得玩点不一样的不是,咱们叫给叫“新多址接入技术”,这家伙新在哪里呢?

非正交多址接入、图分多址接入、多用户共享接入、、、嗯,一大堆的信息,还好现在不在电信行业了,不然非得晕乎不可。总体的思路就是叠加更多的信号或者把前面的技术混在一起,这个技术的含量就有点高了,各位不在电信行业的就看个热闹就行了。

这个5G网络要实现10Gb/秒的峰值速率、1百万的链接数密度、1毫秒的延时,就必须解决这三个关键技术,才能在江湖上行走。

2016年,华为在进行第一阶段的测试中验证了“关键技术”,这个关键技术也主要是验证三大技术。新多址接入采用的是滤波正交频分复用、稀疏码多址接入、极化码。结合了大规模的天线,吞吐率在4G的基础上增加10倍以上,在100MHZ的频率下,平均吞吐量达到了3.6GB/秒;全双工采用的是无源模拟对消、有源模拟对消和数字对消三种框架,实现了110DB的自干扰消除能力,获得了90%以上的吞吐率增益。

2017年华为在第二阶段的“多种关键技术融合测试及单基站性能测试”中,在200MHZ的带宽下,实现了单用户下行速率超6GB/秒,峰值更是达到了18GB/秒,配上小区内安装的首个小型化5G测试终端,单个5G基站可以同时支撑上百路的超高清4K视频。

2018年,华为完成第三阶段“基于独立组网的5G核心网关键技术与业务流程测试”。

这三个测试,华为为5G测试验证画上了完美的句号。

除了这个三大关键技术以外,我们的手机想组成网络,还有很多事需要做。比如传输资源的分派,这个可比马路上红绿灯难多了,只要一个红绿灯没搞好,那对不起,这个城市就几乎陷入瘫痪了。所以,华为又花费了两年多的时间跟运营商进化独立组网测试。还有现在个别地区发生的能耗与效益不对称的问题,能耗太高,大量的资源遭到浪费,只能将基站关闭或是休眠。等等一些基本的要求。

芯片

从以上我们可以看到,5G要处理的数据跟4G相比是成几何数增长,现在凡是数据,就是0和1的事,但凡是用到0和1的事,基本用的也都是芯片。控制电磁波发射的要用到射频芯片,编码、解码就得用到基带芯片,诸如此类的芯片;这些也是5G的关键技术。

我国在这领域里的玩家嘛,嗯,又是华为;华为在2019年发布了首款5G基站核心芯片:天罡;还有全球首款单芯片多模5G基带芯片:巴龙5000。作为中国第一玩家,就免不了拿下世界N个全球第一了。

做这个调制解调芯片的玩家比较多;但是5G的主流频率是28GHZ,有能力处理这个频段的芯片的玩家就只有4个了。

高通是最早开始研究的玩家;三星是做的最远的,做到了39GHZ;华为是工艺最先进的玩家;英特尔是哪里都有它的身影;台湾的联发科据说也在搞,不知做到哪一步了。

我国的华为在2018年发布的巴龙5G01芯片因为太大了,不能装到手机上。所以在2019年就又推出了手机用的巴龙5000,同时还发布了手机处理器麒麟芯片和服务器芯片鲲鹏,这技术也是杠杠的。

关于通信的技术是实在太多太复杂了,得立一个相关的标准出来,大家伙一起在一个圈子里玩,下面我们就开始讲5G标准。

5G标准第一阶段是在2018年完成并在6月份发布的,标志着第一个真正完整意义的国际5G标准出炉,剩余的部分是在2019年后再进行完善。

这次的标准大会一共有50家公司参与,中国玩家有16个,包括大唐电信、中国电信、中国移动、中国联通、华为、联想、中兴等;美国8家,欧洲8家,日本13家,韩国5家。

从数量上看,是以中国玩家为最多;从质量上来看,中国也是前列。

在信道上,欧萌的洛基亚编码一直用的是turbo码,美国玩家高通一直用的是LDPC码,华为擅长的是polar码。所以,第一回合直接将欧萌的turbo技术淘汰了,欧萌的玩家还得重新开始学习LDPC跟polar;

下面就是高通跟华为两大高手的较量了;

信道编码分“控制信道编码”跟“数据信道编码”,高通想的是两个都使用他家的LDPC技术;华为的方案是控制信道用polar码,数据信道用LDPC码。

重头戏来了,联想对华为的方案投了反对票、、、

当然了,在当时联想的投票对结果毫无影响。因为分歧实在是太大,当天只是确认了数据信道使用LDPC码,至于控制信道容后再议。

等到第二次投票的时候,高通、英特尔等找了31家公司组成LDPC阵营,要求使用LDPC技术。而华为则组织了包括联想在内的55家公司组成polar阵营,要求使用polar技术。可想而知,华为完胜,polar码成为控制信道编码,而LDPC则称为数据信道编码。

在后来,这件事被网友们翻了出来,联想也引起了众怒,而华为也很细心的帮着解围。

嗯,再顺便说一句,5G的行业标准还没有全部出来,5G离全面成熟应用还有一段路要走。

应用场景

因为5G的应用太多了,所以国际电信联盟后来又召开了一次ITU-RWP5D第22次会议,确定了5G的应用场景。

总结起来就三句话:5G网速快、信号广、延迟低;但5G实在是太先进了,技术带来的改变超出了想象力,5G是全信息化的基石,完全可以实现物联网吹得牛:万物互联。

就像当年的1G跟现在的4G的区别,当年的大哥大跟现在的手机完全不是一个层面的对手嘛。现在的你是不是很期待呢?快来加入华为的研发大军吧、

未来的5g时代是什么样的2

5G关注的是什么?

5G到底是什么?从字面意义上来看,人们不难理解其为4G之后的下一代技术。但5G技术究竟有哪些能够定义自己的特征呢?回答这一问题,目前来看并不是一件容易的事儿,因为业界对此并未完全达成共识。

透过欧盟最早启动的5G研究项目——METIS(构建2020年信息社会的无线移动通信领域关键技术),我们也许能够对5G有一个相对清晰的认识。这一项目由29个成员组成,其中包括了法国电信、西班牙电信、NTT DoCoMo等全球主流电信运营商,以及爱立信、华为、阿尔卡特朗讯等主流电信设备商,甚至包括了来自非电信行业的宝马集团等。

针对全球数据流量到2022年时将比2010年增长1000倍,欧盟METIS项目对5G技术设定了明确目标:在容量上,5G技术将比4G实现单位面积移动数据流量增长1000倍;在传输速率上,典型用户数据速率提升10倍到100倍,峰值传输速率可达10Gbps……

5G最突出的亮点,“在于其容量将是4G的1000倍”,速率并不是5G要重点解决的问题。事实上,从3G开启的移动宽带之旅开始,移动数据传输速率就在不断提升;今天已经实现的高达1Gbps的速率,已经可以满足绝大多数移动数据业务和应用的需求。

“值得注意的是,提高速率对终端的复杂性要求就会非常高”,特别强调了这一挑战。速率大幅提升之后,终端就会很难设计,同时功耗问题也会再度挑战终端制造业。正因为如此,我认为:“速率提升不一定是必须的,而是一种可能性。”

关注更多速率以外的东西,这也是欧盟METIS项目组所持的心态。该项目总体负责人Afif Osseiran博士表示,5G要解决的问题将不仅仅是传输速率,而是要应对来自于联网设备的大规模增长以及不同应用场景对网络需求的不同挑战。事实上,业界已经普遍认为,单纯的提速已经没有意义了,因为用户对于速率的需求并不会无限制地增长,或者说已不是第一需求。

千倍容量从哪儿来?

应对数字洪水的冲击,这是5G的核心诉求,也是5G要实现千倍于4G容量的根本动力。那么,千倍容量究竟从哪里来?

要实现千倍容量,就需要创新的理念。我认为,首先可以从管理的角度入手,寻找到更多的频谱资源,例如重复利用已有的频谱资源。频谱资源越丰富,容量提升就会越容易一些。对此,李建东给出了一个再形象不过的比喻:“如果在已有的高速公路旁边再增加一条新的高速公路,就必然能够让更多的车辆通行。”

减少每一个小区的面积,缩小小区半径,提高网络密度至10倍乃至20倍,这是另外一个重要方向。

值得注意的是,小基站有望在5G时代扮演极为重要的角色,甚至是最重要的角色。我指出,5G时代一个重要的创新理念,就是未来覆盖范围很广的宏基站,例如当前2G网络现有的宏基站主要用作管理,真正的通信传输由小基站来完成,从而实现通信传输与网络管理的分离,既提高效率,又节省能量。网络的融合,技术的融合,将是5G时代的主旋律。5G将改变以往以技术为中心的模式,而是以体验为中心,通过多种无线技术和网络的融合,来满足数据流量爆炸式增长的需求。

我描述了这样一幅5G时代的应用场景:尽管蜂窝网会持续服务于手机,但当手机处于WLAN的覆盖范围时,蜂窝网就联合WLAN为手机提供“加强版”的数据服务;无论四核还是八核,一部手机的处理能力终归是有限的,但位于同一地点的多部手机,就可以共享处理能力,并将处理好之后的数字内容近距离传输给需要使用的手机。

我认为,最理想的应用场景是,终端周围的所有网络、处理资源都可以按照需求“顺手拈来”,即资源与终端是全新的动态绑定,资源会“跟着终端走”。

要实现这一理想应用场景,构建自组织网络则是重要方向,而这正是当下西安电子科技大学的研究重点。自组织网络解决了人工配置频率和资源带来的难,“只要解决了电源问题,剩下的都由网络自动完成”。例如,某个特定地点的数据业务流量突然增多,那么网络就会自动调配资源前往支援。

5G,是一个全新的舞台,而中国有可能在这一舞台上赢得更多的喝彩。我认为,一方面,中国用户对于5G的需求更加迫切,中国用户使用数据业务的习惯已经养成,中国用户对于数字生活的渴望比国外用户更加强烈;另一方面,当前的许多华为科学家都是世界一流的科学家,信息也实现了充分共享,中国创造的愿望更加强烈,中国创造的实力也在不断提升,中国在5G舞台上的表现一定会比4G时代更好!

未来的5g时代是什么样的3

现在用5g有必要吗

5G的发展似乎比我们想象中的要快,目前市面上已经出现了支持5G网络的手机,并且很多地区的运营商也开通了体验,目前5G网络并没有正式商用,消费者也刚好卡在这个4G向5G网络升级的节点,很多想要在今年换手机的人都犯了困难,就目前而言,或者接下来的一年中,普通消费者到底有必要买5G的手机吗,接下来逐一分析。

目前的5G手机选择性非常少,现在你能买到的也就华为Mate 20X 5G版(12个月前就已经发布的Mate 20X,今年没有任何改变,只是单纯加了5G网络的支持)、接下来即将发布的Mate 30(抢购现货估计年底了)、iQOO Pro 5G、三星 Note 10 5G等等,就这么五六款,并且关注度比较高的iPhone新款是不支持5G的,如果让你花钱去买这其中的任何一款,不一定都是你心仪的, 所以还不如就手头的先用着。

目前的5G网络,实际上对于日常的使用提升是不明显的,我们大众消费者所认识的5G,支持速度上的提升而已,每次谈到5G,都是在聊它的速度有多么多么快,因为目前5G没有普及,相对应的应用场景还没出来,所以你买回来就只是单纯的速度提升而已,新鲜感就那么一两天就没了。回想一下4G出来的时候,不也是如此吗,4G普及之后才出现了短视频、直播这些匹配的应用,所以大家才会感觉确实是有提升。

5G目前的信号覆盖非常稀疏,就目前公布的数据来看,国内就只有11个城市才有可能体验到5G网络,名单为:北京、上海、广州、深圳、重庆、天津、杭州、苏州、武汉、郑州、沈阳,仅有11个,还有很多排名靠前,比较有名的省会城市都是还没有提出建设计划的,如果你不生活在上述的11个城市,那么5G手机买回来对你来说毫无用处。据时间表来看,基本都是2020年-2021年才只实现最基本的覆盖。

5G手机目前的价格不便宜,华为的要6000多,三星的要7999,连最便宜的iQOO都要3798,消费起来就比较奢侈了,而且安卓机跌价厉害,用了半年之后基本上就不怎么之值钱了。那么纵观目前4G手机的市场,价格就要亲民很多了,根本就不会因为网络支持的问题,而去区分售价,不管是千元以下档次的入门机,还是1000-2000的千元机,还有价格更高的旗舰机,他们的网络都是全网通,基本没有区别。

最主要的一点,目前的5G的NSA组网,很多人也都了解过了,这个并不是真正意义上的5G,现阶段NSA比SA组网速度要更快,能让消费者尽快体验5G的下载速度,而SA的标准目前是还没有制定完成的,三星在Note10的发布会上也透露了,SA的组网标准要等到2020年中才能制定好,到时候标准确定之后,目前已经出的所谓支持SA的手机,都是不能在新的标准下使用的,物理层是有本质区别的,即使现在图新鲜买了,到时候还是得换的。

苹果id购买.png

上一篇:蒸汽平台农历新年特卖开启,百余款游戏开启折扣(蒸汽平台送游戏 )
下一篇:华硕推出新款巨齿鲨RTX3060Ti显卡,采用12pin供电

相关推荐

发表评论

◎欢迎参与讨论,请在这里发表您的看法、交流您的观点。