本文目录一览:
简要分析人工智能发展变化
最近几年人工智能在世界范围内取得了爆炸性的发展,根据预测AI带来的社会革命将比工业革命快十倍,规模大三百倍,影响力大近三千倍。自2012年以来,AI计算能力的皮仿宏速度已经超过预测,平均每3-4个月翻一番。人工智能,简称AI,它是一门研究和发展用于模拟、扩展和扩展人类智能的理论、方法、技术和应用系统的新技术科学。在过去的研究中,我们曾经把大脑比作计算机。互联网诞生后,我们发现人脑不是计算机,而是计算机网络。近年来,人工智能离人类越来越近,一些重复性的工作,比如客服和收银员,正在被全方位取代,而创造性的工作领域也发生了显著的变化。目前空客用人工智能代替人类工程师设计飞机,制药公司葛兰素史克用人工智能进行药物开发,工作效率和任务完成质量都比人类工程师更好,人工智能甚至可以拍电影。人工智能产业链可以分为基础层、技术层和应用层。基础方面包括AI芯片市场和大数据服务市场。以自我为中心的云生态建设,制定标准实现大数据交换共享,大数据产业信息安全。
技术方面包括智能人脸识别行业和智能语音识别行业的推广,自然语言处理技术、语音处理技术、图像处理技术等人工智能技术将相互融合。应用层包括智能制造、智能安防、智能电网、智能医疗、智能客服、智慧农业,市场规模将持续增长。汽车/装配、金融服务、电信等高科技领域紧随其后,物流、零售、媒体等行业也在智能应用。展望未来,人工智能将给人类社会带来更多的惊喜和许多不可预测的变化,今天就由湖南众智互联网学院带大家来了解人工智能以后的发展趋势,希望能给大家带来帮助,预计未来人工智能将呈现以下发展趋势如下:
一、加速大数据、云计算、物联网的普及应用。
随着新一代信息技术革命的到来,人工智能将首先在互联网领域得到广泛应用。在这个过程中,通过人工智能与新一代信息技术、大数据、云计算、物联网、工业互联网、无人驾驶的融合发展,将极大地提高这些领域的劳动生产率,推动这些领域的快速发展。随着人工智能的成熟,它将逐渐向其他领域扩散并继续向纵深发展。从未来的发展趋势来看,人工智能的发展前景非常广阔。
二、有效推动中国经济转型和产业升级。
目前,中国互联网正处于从消费互联网到产业互联网的发展过程中。综合应用物联网、大数据、人工智能等新一代技术赋能传统产业后,中国产业将呈现出全新的产业互联网。由于人工智能的广泛应用,在产业升级的过程中会释放出大量的就业岗位。同时,许多落后的生产能力将被淘汰。使用现代人工智能生产线后,将节省大量劳动力。
三、成为人们工作和就业的必备技能。
随着人工智能的普及和发展,智能体将逐渐进入生产环境。未来,各行各业的劳动者在工作中会频繁地与代理人沟通、合作,这对职场人提出了更高的工作要求。在未来的所有工作中,员工都需要掌握人工智能的理论知识,并具备相关的操作技术。就业人员也是如此。因此,这也对教育市场提出了新的要求,提供了新的发展机遇。
四、取代人力,这将成为必然的发展趋势。
在当前人工智能的研究过程中,机器学习是行业研究的核心,也是实现人工智能目标最根本的途径,已经成为人工智能发展的瓶颈。在人工智能解决学习这个基本矛盾之前,最好的人工智能是无法和普通4岁的孩子抗衡的。大消现在人工智能已经取代了一些行业中一些简单重复的工作。随着其在未来的不断发展,更多的工作岗位可能会被人工智能所取代,这是任何人都无法阻挡的客观发展趋势。
五、脑机接口将引发技术风暴。
1、人工智能进入医疗领域,将引发一场行业革命,推动这一行业爆发式发展。
近日,马斯克向世界宣布了一个重要消息,脑机接口将在一年内植入人脑。他说“脑机”被拒绝的概率很小。原则上,这种设备可以修复任何大脑问题,包括视力、瘫痪和阿尔茨海默病。脑机接口,简而言之,就是把芯片植入人的大脑。具燃册体操作方法:神经外科机器人可以像微创眼科手术一样,安全无痛地在头部打孔,快速在大脑中植入芯片,然后通过USB-C接口直接读取大脑信号,手机可以远程控制。这项技术堪称里程碑式的突破。它将彻底改变人们与机器的互动方式,进而改变人类和整个社会。据悉,这项技术已经在小鼠身上成功测试,马斯克将在今年年底前将第一个芯片植入人类患者体内。
2、脑机接口技术成功实现后,人类可以随意控制外来物体,不用说话,只用思维就可以用自己的意志控制它们!
比如当你早上醒来时光靠思考就会自动打开灯,想吃早餐,默默下指令,咖啡机、煎蛋机、金奥会自动开启,如果不想起床,可以控制机械臂帮你到床上。
3、脑机接口技术实现后,人们可以在短时间内获得大量的知识和技能,获得普通人无法拥有的超能力。
记忆移植是该领域的研究热点,现在美国科学家发现了大脑海马体的记忆密码,开始尝试用一个芯片备份记忆,然后将芯片植入另一个大脑,实现记忆移植。现在这个实验已经在猴子身上成功了,有了这项技术,一个不懂英语、法语、德语等语言的人,只要把芯片植入大脑,就能瞬间掌握五六门外语。这项技术的最终目的是通过脑机接口技术将大量的信息传输到计算机或者将大脑的意识上传到计算机,最终实现人类意识和记忆在计算机世界中的永生。
我认为人工智不能完全取代人类,虽然人工智能已经初步掌握了一定的学习能力(被动学习),即使人工智能在未来学会了思考,即掌握了主动学习的能力,仍然无法超越人类。因为人工智能没有感性思维,无法跨越意识领域。人工智能关系到人类的未来,属于全球科研领域的前沿技术。它的发展与信息技术、计算机技术、精密制造技术和互联网技术紧密相连,它的未来有太多的可能性,整体来说未来人工智能的发展前景也是很不错的。
人工智能时代,神经网络的原理及使用方法 | 微课堂
人工智能时代已经悄然来临,在计算机技术高速发展的未来,机器是否能代替人脑?也许有些读者会说,永远不可能,因为散盯扮人脑的思考包含感性逻辑。事实上,神经网络算法正是在模仿人脑的思考方式。想不想知道神经网络是如何“思考”的呢?下面我向大家简单介绍一下神经网络的原理及使用方法。
所谓人工智能,就是让机器具备人的思维和意识。人工智能主要有三个学派——行为主义、符号主义和连接主义。
行为主义是基于控制论,是在构建感知动作的控制系统。理解行为主义有个很好的例子,就是让机器人单脚站立,通过感知要摔倒的方向控制两只手的动作,保持身体的平衡,这就构建了一个感知动作控制系统。
符号主义是基于算数逻辑和表达式。求解问题时,先把问题描述为表达式,再求解表达式。如果你在求解某个问题时,可以用if case这样的条件语句,和若干计算公式描述出来,这就使用了符号主义的方法,比如“专家系统”。符号主义可以认为是用公式描述的人工智能,它让计算机具备了理性思维。但是人类不仅具备理性思维,还具备无法用公式描述的感性思维。比如,如果你看过这篇推送,下回再见到“符号主义”几个字,你会觉得眼熟,会想到这是人工智能相关的知识,这是人的直觉,是感性的。
连接主义就是在模拟人的这种感性思维,是在仿造人脑内的神经元连接关系。这张图给出了人脑中的一根神经元,左侧是神经元的输入,“轴突”部分是神经元的输出。人脑就是由860亿个这样的神经元首尾相接组成的网络。
神经网络可以让计算机具备感性思维。我们首先理解一下基于连接主义的神经网络设计过程。这张图给出了人类从出生到24个月神经网络的变化:
随着我们的成长,大量的数据通过视觉、听觉涌入大脑,使我们的神经网络连接,也就是这些神经元连线上的权重发生了变化,有些线上的权重增强了,有些线上的权重减弱了。
我们要用计算机仿出这些神经网络连接关系,让计算机具备感性思维。
首先需要准备数据,数据量越大越好,以构成特征和标签对。如果想识别猫,就要有大量猫的图片和这张图片是猫的标签构成特征标签对,然后搭建神经网络的网络结构,再通过反向传播优化连接的权重,直到模型的识别准确率达到要求,得到最优的连线权重,把这个模型保存起来。最后用保存的模型输入从未见过的新数据,它会通过前向传播输出概率值,概率值最大的一个就是分类和预测的结果。
我们举个例子来感受一下神经网络的设计过程。鸢尾花可以分为三类:狗尾鸢尾、杂色鸢尾和佛吉尼亚鸢尾。我们拿出一张图,需要让计算机判断这是哪类鸢尾花。人们通过经验总结出了规律:通过测量花的花萼长、花萼宽、花瓣长、花瓣宽分辨出鸢尾花的类别,比如花萼长花萼宽,并且花瓣长/花瓣宽2,则可以判定为这是第一种,杂色鸢尾。看到这里,也许有些读者已经想到用if、case这样的条件语句来实现鸢尾花的分类。没错,条件语句根据这些信息可以判断鸢尾花分类,这是一个非常典型的专家系统,这个过程是理性计算。只要有了这些数据,就可以通过条件判定公式计算出是哪类鸢尾花。但是我们发现鸢尾花的种植者在识别鸢尾花的时候并不需要这么理性的计算,因为他们见识了太多的鸢尾花,一看就知道是哪种,而且随着经验的增加,识别的准确率会提高。这就是直觉,是感性思维,也是我们这篇文章想要和大家分享的神经网络方法。
这种神经网络设计过程首先需要采集大量的花萼长、花萼宽、花瓣长、花瓣宽,和它们所对应的是哪种鸢尾花。花萼长、花萼宽、花瓣长、花瓣宽叫做输入特征,它们对应的分类叫做标签。大量的输入特征和标签对构建出数据集,再把这个数据集喂入搭建好的神经网络结构,网络通过反向传播优化参数,得到模型。当有新的、从未见过的输入特征,送入神经网络时,神经网络会输出识别的结果。
展望21世纪初,在近十年神经网络理论研究趋向的背景下,神经网络理论的主要前沿领域包括:
一、对智能和机器关系问题的认识进一步增长。
研究人类智力一直是科学发展中最有意义,也是空前困难的挑冲灶战性问题。人脑是我们所知道的唯一则带智能系统,具有感知识别、学习、联想、记忆、推理等智能。我们通过不断 探索 人类智能的本质以及联结机制,并用人工系统复现或部分复现,制造各种智能机器,这样可使人类有更多的时间和机会从事更为复杂、更富创造性的工作。
神经网络是由大量处理单元组成的非线性、自适应、自组织系统,是在现代神经科学研究成果的基础上提出的,试图模拟神经网络加工、记忆信息的方式,设计一种新的机器,使之具有人脑风格的信息处理能力。智能理论所面对的课题来自“环境——问题——目的”,有极大的诱惑力与压力,它的发展方向将是把基于连接主义的神经网络理论、基于符号主义的人工智能专家系统理论和基于进化论的人工生命这三大研究领域,在共同追求的总目标下,自发而有机地结合起来。
二、神经计算和进化计算的重大发展。
计算和算法是人类自古以来十分重视的研究领域,本世纪30年代,符号逻辑方面的研究非常活跃。近年来,神经计算和进化计算领域很活跃,有新的发展动向,在从系统层次向细胞层次转化里,正在建立数学理论基础。随着人们不断 探索 新的计算和算法,将推动计算理论向计算智能化方向发展,在21世纪人类将全面进入信息 社会 ,对信息的获取、处理和传输问题,对网络路由优化问题,对数据安全和保密问题等等将有新的要求,这些将成为 社会 运行的首要任务。因此,神经计算和进化计算与高速信息网络理论联系将更加密切,并在计算机网络领域中发挥巨大的作用,例如大范围计算机网络的自组织功能实现就要进行进化计算。
人类的思维方式正在转变,从线性思维转到非线性思维神经元,神经网络都有非线性、非局域性、非定常性、非凸性和混沌等特性。我们在计算智能的层次上研究非线性动力系统、混沌神经网络以及对神经网络的数理研究,进一步研究自适应性子波、非线性神经场的兴奋模式、神经集团的宏观力学等。因为,非线性问题的研究是神经网络理论发展的一个最大动力,也是它面临的最大挑战。
以上就是有关神经网络的相关内容,希望能为读者带来帮助。
以上内容由苏州空天信息研究院谢雨宏提供。
关于人工智能
人脑有意识,电脑有意识吗?在科学极其发展的今天,电脑是否会超越人脑,人是否会成为电脑的奴隶?哲学不能不对这一问题做出回答。
人工智能是20世纪中叶科学技术所取得的重大成果之一。它的诞生与发展对人类文明产生了巨大的影响和效益。同时也引起了哲学意识与人工智能的理论探讨。
人工智能是相对于人类智能而言的。它是指用机械和电子装置来模拟和代替人类的某些智能。人工智能也称“机器智能”或“智能模拟”。当今人工智能主要是利用电子技术成果和仿生学方法,从大脑的结构方面模拟人脑的活动,即结构模拟。
人脑是智能活动的物质基础,是由上百亿个神经元组成的复杂系统。结构模拟是从单个神经元入手的,先用电子元件制成神经元模型,然后把神经元模型连接成神经网络(脑模型) ,以完成某种功能,模拟人的某些智能。如1957年美国康慎漏乃尔大学罗森布莱特等人设计的“感知机”;1975年日本的福岛设计的“认知机”(自组织多层神经网络) 。
电子计算机是智能模拟的物质技术工具。它是一种自动、高速处理信息的电子机器。它采用五个与大脑功能相似的部件组成了电脑,来模拟人脑的相应功能。这五个部件是:(1) 输入设备,模拟人的感受器(眼、耳、鼻等) ,用以接受外来的信息。人通过输入设备将需要计算机完成的任务、课题、运算步骤和原始数据采用机器所能接受的形式告诉计算机,并经输入设备把这些存放到存贮器中。(2) 存贮器,模拟人脑的记忆功能, 将输入的信息存储起来,供随时提取使用,是电子计算机的记忆装置。(3) 运算器,模拟人脑的计算、判断和选择功能,能进行加减乘除等算术运算和逻辑运算。(4) 控制器,人脑的分析综合活动以及通过思维活动对各个协调工作的控制功能,根据存贮器内的程序,控制计算机的各个部分协调工作。它是电脑的神经中枢。 (5)输出设备,模拟人脑的思维结果和对外界刺激的反映,把计算的结果报告给操作人员或与外部设备联系,指挥别的机器动作。
以上五部分组成的电脑是电子模拟计算机的基本部分,称为硬件。只有硬件还不能有效地模拟和代替人脑的某些功能,还必须有相应的软件或软设备。所哗侍谓软件就是一套又一套事先编好的程序系统。
人工智能的产生是人类科学技术进步的结果,是机器进化的结果。人类的发展史是人们利用各种生产工具有目的地改造第一自然( 自然造成的环境,如江河湖海、山脉森林等) ,创造第二自然( 即人化自然,如人造房屋、车辆机器等) 的历史。人类为了解决生理机能与劳动对象之间的矛盾,生产更多的财富,就要使其生产工具不断向前发展。人工智能,是随着科学技术的发展,在人们创造了各种复杂的机器设备,大大延伸了自己的手脚功能之后,为了解决迫切要延伸思维器官和放大智力功能的要求而产生和发展起来的。
从哲学上看,物质世界不仅在本原上是统一的,而且在规律上也是相通的。不论是机器、动物和人,都存在着共同的信息与控制规律,都是信息转换系统,其活动都表现为一定信息输入与信息输出。人们认识世界与在实践中获取和处理信息的过程相联系,改造世界与依据已有的信息对外界对象进行控制的过程相联系。总之,一切系统都能通过信息交换与反馈进行自我调节,以抵抗干扰和保持自身的稳定。因此,可以由电子计算机运用信息与控制原理来模拟人的某些智能活动。
从其它科学上来说,控制论与信息论就是运用系统方法,从功能上揭示了机器、动物、人等不同系统所具有的共同规律。以此把实际的描述形式化,即为现象和行为建立一个数学模型;把求解问题的方式机械化,即根据数学模型,制定某种算法和规则,以便机械地执行;把解决问题的过程自动化,即用符号语言把算法和规则编成程序,交给知识智能机器执行某种任务,使电子计算机模拟人的某些思维活动。所以,控制论、信息论是"智能模拟"的科学依据,“智能模拟”是控制论、信息论在实践中的最重要的实践结果。
人工智能是人类智能的必要补充,但是人工智能与人类智能仍存在着本质的区别:
1 、人工智能是乱孝吵机械的物理过程,不是生物过程。它不具备世界观、人生观、情感、意志、兴趣、爱好等心理活动所构成的主观世界。而人类智能则是在人脑生理活动基础上产生的心理活动,使人形成一个主观世界。因此,电脑与人脑虽然在信息的输入和输出的行为和功能上有共同之处,但在这方面两者的差别是十分明显的。从信息的输入看,同一件事,对于两个智能机具有相同的信息量,而对于两个不同的人从中获取的信息量却大不相同。“行家看门道,外行看热闹”就是这个道理。从信息的输出方面看,两台机器输出的同一信息,其信息量相等。而同一句话,对于饱于风霜的老人和天真幼稚的儿童,所说的意义却大不相同。
2 、人工智能在解决问题时,不会意识到这是什么问题,它有什么意义,会带来什么后果。电脑没有自觉性,是靠人的操作完成其机械的运行机能;而人脑智能,人的意识都有目的性,可控性,人脑的思维活动是自觉的,能动的。
3 、电脑必须接受人脑的指令,按预定的程序进行工作。它不能输出末经输入的任何东西。所谓结论,只不过是输入程序和输入数据的逻辑结果。它不能自主地提出问题,创造性地解决问题,在遇到没有列入程序的“意外”情况时,就束手无策或中断工作。人工智能没有创造性。而人脑功能则能在反映规律的基础上,提出新概念,作出新判断,创造新表象,具有丰富的想象力和创造性。
4 、人工机器没有社会性。作为社会存在物的人,其脑功能是适应社会生活的需要而产生和发展的。人们的社会需要远远超出了直接生理需要的有限目的,是由社会的物质文明与精神文明的发展程序所决定的。因此,作为人脑功能的思维能力,是通过社会的教育和训练,通过对历史上积累下来的文化的吸收逐渐形成的。人的内心世界所以丰富多采,是由于人的社会联系是丰富的和多方面的,人类智能具有社会性。所以要把人脑功能全面模拟下来,就需要再现人的思想发展的整个历史逻辑。这是无论多么“聪明”的电脑都做不到的。随着科学技术的发展,思维模拟范围的不断扩大,电脑在功能上会不断向人脑接近。但从本质上看,它们之间只能是一条渐近线,它们之间的界限是不会清除的。模拟是近似而不能是等同。
人工智能与人脑在功能上是局部超过,整体上不及。由于人工智能是由人造机器而产生的,因此,人工智能永远也不会赶上和超过人类智能。所谓“机器人将超过人奴役人”、“人将成为计算机思想家的玩物或害虫,…… 保存在将来的动物园”的“预言”是不能成立的。因为,它抹煞了人与机器的本质差别与根本界限。
人工智能充实和演化了辩证唯物主义的意识论。它进一步表明了意识是人脑的机能,物质的属性。电脑对人脑的功能的模拟,表明了意识并不是神秘的不可捉摸的东西,不是游离于肉体内外脱离人脑的灵魂,也不是人脑分泌出来的特殊物质形态,而是人脑的机能属性。这就进一步证明了意识本质的原理。
人工智能的出现深化了意识对物质的反作用的原理。人工智能是人类意识自我认识的产物。电脑的出现,意昧着人类意识已能部分地从人脑中分化出来,物化为物质的机械运动。这不仅延长了意识的器官,也说明意识能反过来创造"人脑"。这是意识对人脑的巨大的反作用。从意识与人脑的相互关系中进一步深化了意识对物质形态进步的反作用,意识作为最高的物质属性对于物质运动发展的反作用。
人工智能引起了意识结构的变化,扩大了意识论的研究领域。电脑作为一种新形态的机器而进入了意识器官的行列。它不仅能完成人脑的一部分意识活动,而且在某种功能上还优于人脑。如人脑处理信息和采取行动的速度不如电脑,记忆和动作的准确性不如电脑。因此,在现代科学认识活动中,没有人工智能,就不会有人类认识能力的突破性发展和认识范围的不断扩大。电脑不仅依赖于人,人也依赖于电脑。这就使得在意识论结构上增加了对人工智能的探讨以及对人机互补的关系的探讨。同时思维模拟,也把思维形式在思维中的作用问题突出出来,为意识论的研究提出了一个重要课题。
对人工智能的看法作文
人工智能的出现人工智能新突破:研究人员发现纳米线网络能像人脑一样学习和记忆,让我们对科学技术的看法产生了很大的改变,下面是我为人工智能新突破:研究人员发现纳米线网络能像人脑一样学习和记忆你整理的对人工智能的看法作文,供大家阅览!
关于人工智能的一些介绍与看法
内容提要人工智能新突破:研究人员发现纳米线网络能像人脑一样学习和记忆:人工智能是计算机科学的一个领域,它企图了解智能的实质,并生产出一种新的能以人类智能相似的方式作出反应的智能机器。它研究和应用的领域包括模式识别、自然语言理解与生成、专家系统、自动程序设计、定理证明、联想与思维的机理、数据智能检索等。除了计算机科学以外, 人工智能还涉及信息论、控制论、自动化、仿生核颂学、生物学、心理学、数理逻辑、语言学、医学和哲学等多门学科。人工智能也被认为是二十一世纪(基因工程、纳米科学、人工智能)三大尖端技术之一。近三十年来它获得了迅速的发展,在很多学科领域都获得了广泛应用,并取得了丰硕的成果,人工智能已逐步成为一个独立的分支,无论在理论和实践上都已自成一个系统。
一、人工智能概述
运手“人工智能”一词最初是在1956年DARTMOUTH学术会议上提出的。从那以后,研究者们发展了众多理论和原理,人工智能的概念也随之越来越深入人心。人工智能研究的一个主要目标是使机器能够胜任一些通常需要人类智能才能完成的复杂工作。
通常,计算机的数学基础包括统计学,信息论和控制论,当然还包括一些非数学学科。长期的工作中,计算机往往只是始终如一的运用这些知识来进行工作,基本上只是依靠以前的“经验”。所谓人工智能,就是指能让计算机像人脑一样去工作,不仅仅是能够连续式学习,更要在工作的过程中,学会跳跃式学习,也就是能过像人类一样,获得顿悟或是灵感。一直以来,计算机通常只能靠经验来工作,很难会“顿悟”,也就是很难获得较大的技能提高。人类的实践过程同时包括经验和创造。这正是智能化工作者梦寐的东西。
近几十年来,人工智能日益发展,技术日趋成熟,研究成果也日趋丰富。例如2013年,帝金数据普数中心数据研究员S.C WANG开发了一种新的数据分析方法,该方法导出了研究函数性质的新方法。作者发现,新数据分析方法给计算机学会“创造”提供了一种方法。
二、人工智能的科学范畴
现在,人工智能已构成信息技术领域的一个重要的学科。该学科研究如何使机器具有智能或者说如何利用计算机实现智能的理论、方法和技术,所以,人工智能既属于计算机科学技术的一个前沿领域,也属于信息处理和自动化技术的一个前沿领域。但由于其研究内容涉及到“智能”,因此,人工智能不仅局限于计算机、信息和自动化等学科,还涉及到智能学科、认知科学、语言学、逻辑学、教育科学、系统教学、数理科学等众多学科领域。人工智能是一门综合性的交叉学科和边缘学科。
三、人工智能的研究内容
人工智能的研究内容可以归纳为:搜索与求解、学习与发现、知识与推理、发明改悄郑与创造、感知与交流、记忆与联想、系统与建设、应用于工程等八个方面。从研究对象来说,人工智能涉及三个相对独立的域,即:(1)研究会读和说的计算机程序,也就是通常称为“自然语言处理”领域;(2)研制灵敏的机器,通过设计出具有视觉和听觉程序化的机器人,在活动时能识别不断改变的环境;(3)开发用符号识别来模拟人类专家行为的程序,即专家系统。但是,从研究的性质来说,人工智能一般可分为理论研究和工程研究两个方面。理论研究主要是对有关开发和理解人和机器智能方面理论进行研究和探索.而工程研究则主要是
设计和开发研究人工智能的工具和像专家系统这样的产品。但是,这并不是说,它们彼此是独立的;相反,它们是彼此依赖和不可分割的。随着人工智能理论和技术逐步被采用,并具体地开发出产品。理论和工程研究之间的界限将会缩小,直至消失。
四、人工智能的技术特征
(1)具有搜索功能。采用一定搜索策略可以快速地找到答案。
(2)知识表示能力。可以表示一些不精确的、模糊的知识(适合表示多媒体数据)。
(3)一定的推理功能。可以从给定的实事、前提中找出答案、发现知识。
(4)抽象功能。抽象用以区分重要与非重要的特征,借助抽象功能可将处理问题中的重要特征和变式与大量非重要特征和变式区分开来,使处理变得更有效、更灵活。对用户来说,往往只需要叙述“是什么问题”,“要做什么”,而把“怎么做”留给智能程序来完成。
(5)语音识别功能及模糊信息处理能力。有处理不精确和模糊信息的能力。
五、人工智能的发展阶段
第一阶段:50年代人工智能的兴起和冷落:人工智能概念首次提出后,相继出现了一批显著的成果,如机器定理证明、跳棋程序、通用问题s求解程序、LISP表处理语言等。但由于消解法推理能力的有限,以及机器翻译等的失败,使人工智能走入了低谷。这一阶段的特点是:重视问题求解的方法,忽视知识重要性。
第二阶段:60年代末到70年代,专家系统出现,使人工智能研究出现新高潮。 DENDRAL化学质谱分析系统、MYCIN疾病诊断和治疗系统、PROSPECTIOR探矿系统、Hearsay-II语音理解系统等专家系统的研究和开发,将人工智能引向了实用化。并且,1969年成立了国际人工智能联合会议。
第三阶段:80年代,随着第五代计算机的研制,人工智能得到了很大发展。日本1982年开始了“第五代计算机研制计划”,即“知识信息处理计算机系统KIPS”,其目的是使逻辑推理达到数值运算那么快。虽然此计划最终失败,但它的开展形成了一股研究人工智能的热潮。
第四阶段:80年代末,神经网络飞速发展。 1987年,美国召开第一次神经网络国际会议,宣告了这一新学科的诞生。此后,各国在神经网络方面的投资逐渐增加,神经网络迅速发展起来。
第五阶段:90年代,人工智能出现新的研究高潮.由于网络技术特别是国际互连网的技术发展,人工智能开始由单个智能主体研究转向基于网络环境下的分布式人工智能研究。不仅研究基于同一目标的分布式问题求解,而且研究多个智能主体的多目标问题求解,将人工智能更面向实用。另外,由于Hopfield多层神经网络模型的提出,使人工神经网络研究与应用出现了欣欣向荣的景象。人工智能已深入到社会生活的各个领域。
六、人工智能的应用领域
1.在管理系统中的应用
(1)人工智能应用于企业管理的意义主要不在于提高效率,而是用计算机实现人们非常需要做,但工业工程信息技术是靠人工却做不了或是很难做到的事情。在《谈谈人工智能在企业管理中的应用》一文中刘玉然指出把人工智能应用于企业管理中,以数据管理和处理为中心,围绕企业的核心业务和主导流程建立若干个主题数据库,而所有的应用系统应该围绕主题数据库来建立和运行。
(2)智能教学系统(ITS)是人工智能与教育结合的主要形式,也是今后教学系统的发展方向。信息技术的飞速发展以及新的教学系统开发模式的提出和不断完善,推动人们综合运用超媒体技术、网络基础和人工智能技术区开发新的教学系统,计算机智能教学系统就是其中的典型代表。
2.在工程领域的应用
(1)医学专家系统是人工智能和专家系统理论和技术在医学领域的重要应用,具有极大的科研和应用价值,它可以帮助医生解决复杂的医学问题,作为医生诊断、治疗的辅助工具。目前,医学智能系统已通过其在医学影像方面的重要作用,从而应用于内科、骨科等多个医学领域中,并在不断发展完善中。
(2)地质勘探、石油化工等领域是人工智能的主要作用发挥领地。1978年美国斯坦福国际研究所就研发制成矿藏勘探和评价专家系统“PROSPECTOR”,该系统用于勘探评价、区域资源估值和钻井井位选择等,是工业领域的首个人工智能专家系统,其发现了一个钼矿沉积,价值超过1亿美元。
3.在技术研究中的应用
(1)在超声无损检测(NDT)与无损评价(NDE)领域中,目前主要广泛采用专家系统方法对超声损伤(UT)中缺陷的性质、形状和大小进行判断和归类;专家运用超声无损检测仪器,以其高精度的运算、控制和逻辑判断力代替大量人的体力与脑力劳动,减少了任务因素造成的无擦,提高了检测的可靠性,实现了超声检测和评价的自动化、智能化。
(2)人工智能在电子技术领域的应用可谓由来已久。随着网络的迅速发展,网络技术的安全是我们关心的重点,因此我们必须在传统技术的基础上进行网络安全技术的改进和变更,大力发展数据挖掘技术、人工免疫技术等高效的AI技术,开发更高级AI通用和专用语言,和应用环境以及开发专用机器,而与人工智能技术则为我们提供了可能性。
七、人工智能的发展方向
1.专家系统是目前人工智能中最活跃、最有成效的一个研究领域,它是一种具有特定领域内大量知识与经验的程序系统。近年来,在“专家系统”或“知识工程”的研究中已出现了成功和有效应用人工智能技术的趋势。
2.智能信息检索技术的飞速发展。人工智能在网络信息检索中的应用,主要表现在:(1)如何利用计算机软硬件系统模仿、延伸与扩展人类智能的理论、方法和技术。(2)由于网络知识信息既包括规律性的知识,如一般原理概念,也包括大量的经验知识这些知识不可避免地带有模糊性、随机性、不可靠性等不确定性因素对其进行推理,需要利用人工智能的研究成果。
3.SOAr是一种通用智能体系结构,其始终处在人工智能研究的前沿,已显示出强大的问题求解能力,它认为机器人的开发是人工智能应用的重要领域。
八、强弱对比
1.强人工智能:强人工智能观点认为有可能制造出真正能推理和解决问题的智能机器,并且,这样的机器能将被认为是有知觉的,有自我意识的。强人工智能可以有两类:(1)类人的人工智能,即机器的思考和推理就像人的思维一样。(2)非类人的人工智能,即机器产生了和人完全不一样的知觉和意识,使用和人完全不一样的推理方式。
2.弱人工智能:弱人工智能观点认为不可能制造出能真正地推理和解决问题的智能机器,这些机器只不过看起来像是智能的,但是并不真正拥有智能,也不会有自主意识。
主流科研集中在弱人工智能上,并且一般认为这一研究领域已经取得可观的成就。强人工智能的研究则处于停滞不前的状态下。
结论与看法:
人工智能的研究内容与应用领域之广,决定了人工智能在将来的各个工作领域得到大展手脚的机会,是未来社会发展的趋势。为此,需要我们一代代人去为之努力奋斗。不仅要在弱人工智能上取得突破,更要努力在强人工智能上做出一些较大的进取。对于人工智能,现在与将来同样会有很多人为之付出或多或少的精力,为了更加美好的明天。期待着将来人工智能能更好地融入到社会的各个方面,造福于人类。
猜你喜欢:
1. 对于人工智能的看法英语作文
2. 对人工智能的态度作文
3. 有关人工智能利弊的英语作文
4. 关于人工智能的影响英文作文
5. 人工智能如何影响我们的英语作文
6. 人工智能怎样影响人类的英语作文
7. 人工智能对人类的影响作文
8. 人工智能影响生活英语作文范文
人工智能在未来是否可以取代人类大脑?
两年前人工智能新突破:研究人员发现纳米线网络能像人脑一样学习和记忆,一场人机围棋大战,谷歌公司的人工智能程序(AlphaGo)阿尔法狗名扬全球,全世界的目光都汇聚到了科学技术的前沿——人工智能。
人工智能是计算机学科的一个分支,主要研究如何使计算机模拟人的某些思维过程和行为,被誉为“二十一世纪三大尖端技术” 之一。科学家开展人工智能的研究已有几十年的历程,最近几年,随着云计算、大数据、深度学习等新技术的提出和应用,使孙败得人工智能飞速发展,在一些领域达到了可以与人类大脑“叫板”的高度。
人工智能的热点研究方向是,机器的深度学习,AlphaGo的取胜也主要是通过“深度学习”而致胜。深度学习,它源于神经网络理论,目标是让计算机像人一样具有自学能力,可从大量的数据中自行总结出某种事物的特征。在准备此次人机大战过程中,AlphaGo背后的一群人工智能领域的专家把围棋高手的比赛记录输入给它,然后AlphaGo根据深度学习程序进行3000万步的自学习训练。在经过自学习训练后,AlphaGo便能轻松地判断棋手下一步的走法。
当前的人工智能发展,其具有计算能力强、记忆能力强,学习能力强的特点。而围棋又是一个在特定时间内给出相对最优解法的游戏,在这方面人工智能与人类大脑相比,优势明显。同时,人类在心理抗压能力、精力持久性上与AlphaGo相比无疑也处于下风。因而,在人机围棋大战中,AlphaGo战胜韩国棋手李世石也是在情理之中。
人工智能具有计算能力强、记忆能力强、学习能力强的特点,但是它缺乏人类的思考能力、应变能力以及创新能力。人工智能新突破:研究人员发现纳米线网络能像人脑一样学习和记忆我们回顾一下那次的人机大战,在第四局中,李世石巧妙地营造出了一种欺骗性模式,扳回一局。这来之不易的胜利说明,AlphaGo人工智能的应旁凯和变性明显不足,无法很好地处理完全运盯未知的情景。就目前人工智能的发展水平而言,它能够自己去“学习”,还不能自己去“思考”。而在现实世界中,未知的情况、态势的变化,没有“思考”是不行的。而且人工智能的本质其实也是一种计算机程序,计算机程序就意味着有被破解和植入病毒的危险,所以人工智能只能作为人类大脑的一个延伸工具,而不是取代人类大脑。
发表评论