中科曙光:公司已为“紫东太初”、“悟道2.0”等多个国内大模型训练提供算力支持

本文目录一览:

「大模型+大算力」加持,通用人工智能和智能驾驶双向奔赴

开年以来 ChatGPT、GPT-4 的相继面世再度掀起计算机科学领域通用人工智能(AGI)研究热潮,也不断刷新我们对 AI 的认知。

作为具有人类水平表现的大型多模态模型,GPT-4 被视为迈向 AGI 的重要一步,标志着创新范式的深度变革和生产力的重新定义,也必将带来更多元的产品迁移。

截至目前,全球已经有超百万家初创公司声称使用这一秘密武器来创造新产品,而这些产品将彻底改变从法律到股票交易,从游戏到医疗诊断的近乎一切领域。

尽管其中很多是营销泡沫,但与所有技术突破一样,总会存在炒作周期和意想不到的远期效果。

事实上在另一边,进入 2023 年智能汽车领域同样十分热闹。

智能化已然成为上海车展全场关注的最大焦点,除了激光雷达等关键传感器的单点式突破,各大巨头也纷纷展示智春神能驾驶全产品矩阵,城市场景辅助驾驶量产落地加速推进。

更加值得注意的是,BEV、大模型、超算中心等计算机热词正在与自动驾驶、行泊一体、城市 NOA 等智驾焦点火速排列组合,颇有相互交融、双向奔赴的味道。

在这背后,一方面是近年来智驾、智舱持续升级对 AI 在汽车场景落地的数据、算法、算力不断提出更高要求,另一方面,AGI 的重大突破也已将触角伸向智能汽车,将其视为实现闭环应用的重要场景,很多企业布局已经相当高调。

日前,商汤科技 SenseTime 举办技术交流日活动,分享了以「大模型+大算力」推进 AGI 发展的战略布局,并公布该战略下的「日日新 SenseNova」大模型体系。

在「大模型+大算力」加持下,本次上海车展商汤绝影驾、舱、云一体产品体系已全栈亮相,近 30 款合作量产车型集中展出,商汤也再度分享了智能汽车时代的 AGI 落地新思考。

本次上海车展亮相的部分绝影合作车型展示

01、算法:AI 正式步入大模型时核森丛代

如商汤科技联合创始人、首席科学家、绝影智能汽车事业群总裁王晓刚所言,「AGI 催生了新的研究范式,即基于一个强大的多模态基模型,通过强化学习和人类反馈不断解锁基模型新的能力,从而更高效地解决海量的开放式任务。」

通用大模型并非为自动驾驶而生,或为满足自动驾驶的特定任务需求而设计。但智能驾驶开发的诸多新需求已在推动算法从专用小模型向通用大模型快速演进。

首先是应对海量数据处理和 Corner Case 问题的迫切需求。

对于感知系统低频出现但至关重要的小目标及带来的潜在安全隐患,算法开发需要面对海量数据,传统的 AI 小模型将难以同时处理大数据量和高复杂度的任务。通用大模型则可用在长尾目标的初筛过程,并叠加语料文字处理得到很好的效果。

再比如智驾算法开发对自动化数据标注、降低人工成本的诉求。相比于人工标注,通用大模型将自动化对海量数据完成标注任务,大幅降低标注数据获取的时间成本和本身的金钱成本,从而缩短研发周期、提升成本效益。

处于类似的考量,近年来国内外巨头企业已围绕大模型纷纷展开各自智驾布局。

继 Google 于 2017 年提出将 Transformer 结构应用在 CV 领域图像分类,大模型已在 GPT-2、GPT-3、BERT 等当中不断证明实力,特斯拉率先站台 Transformer 大模型征战图像视觉。

国内企业也紧随其后:

毫末智行已宣布自动驾驶认知大模型正式升级为 DriveGPT,百度表示利用大模型来提升自动驾驶感知能力改樱并将大模型运用到数据挖掘,华为也已宣布加入大模型争霸赛,自研「盘古」即将对外上线。

作为行业领先的人工智能公司,商汤在大模型领域可谓乘风破浪,过去一两年则全面将大模型能力在各业务线 20 多个场景落地,包括智能驾驶。

商汤「日日新 SenseNova」大模型体系背后是大模型研发中深厚的积累。商汤有自己的全栈大模型研发体系,其中就包括针对大模型的底层训练及实施过程中的各种系统性优化。

例如,商汤近期向社区发布的用于真实感知、重建和生成的多模态的数据集 OmniObject3D 中包含 190 类 6000 个物体,数据质量非常高。

再比如,商汤在 2019 年就已首次发布 10 亿参数的视觉大模型,到 2022 年参数规模已达到 320 亿,这也是世界上迄今为止最大的视觉模型。

此外,商汤也在智驾领域持续展示大模型能力。2021 年开发的 BEV 感知算法在 Waymo 挑战赛以绝对优势取得冠军,2021 年 BEV Former 的 Transformer 结构至今仍是行业最有影响力的 BEV 工作,今年开发的 UniAD 是业内首个感知决策一体化的端到端自动驾驶解决方案。

在技术实力的另一端是量产进度。商汤也给出了自己的智能驾驶量产公式:

自动驾驶技术能力=场景数据 x 数据获取效率 x 数据利用效率² =场景数据 x 数据获取效率 x 先进算法 x 先进算力。

而先进的算法大模型不仅将通过跨行业数据汇聚提升驾驶场景数据资源,通过数据闭环开发模式和自动数据标注提升数据获取效率,更将大幅提升感知精度和感知丰富度进而成倍提升数据利用效率。

依托原创 AI 算法和模型积累,商汤领先的 BEV 感知算法推进国内首批量产应用,并采用 Domain Adaption 算法有效解决跨域泛化问题。商汤首创的自动驾驶 GOP 感知体系将目标数据获取的人力成本降低 94%,实现低成本的车端模型开发,目前也已投入量产应用。

02、算力:智能汽车时代的重要基础设施

随电子电气架构技术由分布式不断向集中式演进,大算力芯片成为新型电子电气架构实现的物理基础。

近年来车端芯片算力发展突飞猛进,如英伟达规划中的 Atlan 单颗芯片算力超 1000TOPS,THOR 单颗算力超 2000TOPS,将大幅提升单车感知决策能力。

而在云端,AGI 在自动驾驶、网联等场景的泛化应用将提出比车端指数级更高的算力要求——从数据标注到模型训练,从场景仿真到算法迭代。

算力将是智能汽车时代的新型基础设施。

在此背景下,近年来主流企业纷纷开启双线并行探索,车端自研算力平台,云端建立超算中心。而进入大模型时代后,数据量随着多模态的引入也将大规模增长,因此必然也会导致 AGI 对算力需求的剧增。

可以看到,英伟达车端云端同步布局并将提供端到端的全栈式 AI 加速计算解决方案,特斯拉也早在 2021 年 8 月发布自研云端超算中心 Dojo。

据近期报道,埃隆·马斯克也将成立一家人工智能公司来与 OpenAI 竞争,已购买数千个英伟达 GPU 并一直招募 AI 研究人员和工程师。

国内方面,吉利、蔚来、特斯拉、毫末智行、小鹏等企业也已跟进布局云端算力集群,投入巨大以提升智驾开发算力储备。

对于商汤来说,如果说大模型将是支撑智能驾驶的上层建筑,那么大算力就是数字基座。

商汤科技董事长兼 CEO 徐立表示,目前大模型对基础算力、基础设施的需求非常旺盛,基础算力对并行效率的要求也非常高,但真正好用的基础设施其实十分稀缺。

出于这一原因,商汤历时五年自建了业界领先的 AI 大装置 SenseCore,完成 2.7 万块 GPU 的部署并实现 5.0 exa FLOPS 的算力输出能力,是亚洲目前最大的智能计算平台之一,可同步支持 20 个千亿规模参数量的超大模型同时训练。

位于上海临港的 AIDC 人工智能计算中心将为智能汽车的数据存储、标注、脱敏、仿真训练、算法迭代到部署的闭环提供算力支持,打通基于数据驱动的算法生产全流程,加速高级别智能驾驶技术的 AI 模型生产和持续迭代,推动实现规模化量产。

在 AIDC 的基础上,AI 大装置也将提供支持大模型生产的一系列服务:

处理大模型需要的自动化数据标注,将使智能标注效率提升百倍;

大模型推理部署,使得推理效率提升 100% 以上;

大模型并行训练,最大 4000 块卡并联的单集群,可训练参数量超 5000 亿的稠密模型,可训练超万亿参数;

大模型增量训练,增量微调成本降低 90%;

开源模型和大模型训练开发者工具,大规模提升开发效率。

如此规模的算力设施即使特斯拉同期也尚难以望其项背,也必将推动大模型的高效闭环。

03、「大模型+大算力」推动智能汽车行业整体进程

汽车行业正在面临百年未有之大变革。尽管此次以「大模型+大算力」推进 AGI 发展是商汤提出的战略布局,但事实上,这一理念早已在行业层面达成共识。

基于感知、决策规控和 AI 云三大核心能力,商汤「大模型+大算力」已赋能绝影驾、舱、云三位一体产品体系量产落地:

除智能驾驶领域的全栈能力和行泊一体量产解决方案外,「大模型+大算力」也正在助力商汤打造智能座舱跨场景生态。

车展期间,与商汤「日日新 SenseNova」大模型体系深度融合的绝影未来展示舱升级亮相,语言大模型「商汤商量 SenseChat」以及 AIGC 文生图平台「商汤秒画 SenseMirage」也已上车,多点融合重构人车交互方式,打造第三空间。

以「商量」为例,作为千亿级参数的自然语言处理模型,其使用大量数据训练并充分考虑中文语境,展示出出色的多轮对话和超长文本的理解能力。

商汤也展示了语言大模型支持的诸多汽车场景创新应用,如在行车过程中化身「邮件助手」自动提炼关键信息,作为「会议助理」自动生成会议纪要,大大节省用户行车时处理工作的时间和精力,为未来出行的应用场景拓展带来丰富的想象空间。

此外,以人工智能大模型开发、生产、应用为核心,一站式

【本文来自易车号作者汽车之心,版权归作者所有,任何形式转载请联系作者。内容仅代表作者观点,与易车无关】

2021那些事儿|细数信息技术4大领域

2021年,信息技术发展突飞猛进。人工智能、大数据、开源、虚拟现实(VR)、增强现实(AR)……每个领域的发展几乎都可圈可点。

在人工智能领域,人工智能的语言大模型、图文大模型乃至多模态大模型的基本能力已得到了充分展现。例如,阿里巴巴达摩院公布多模态大模型M6最新进展,参数从万亿跃迁至10万亿;鹏城实验室与百度联合发布全球首个知识增强千亿大模型——鹏城—百度·文心,参数规模达到2600亿。

不仅如此,人工智能与其他科学领域的交叉融合也擦出火花。在《科学》近日公布的2021年度科学突破榜单上,AlphaFold和RoseTTA-fold两种基于人工智能预测蛋白质结构的技术位列榜首。

在人机交互领域,扎克伯格将Facebook公司更名为“Meta”时,特斯拉和SpaceX首席执行官埃隆物和·马斯克则将注意力放在脑机接口上。马斯克认为脑机接口装置将更有可能改变世界,帮助四肢瘫痪或有身体缺陷的人更好地生活和工作,“复杂的脑机接口装置可以让你完全沉浸在虚拟现实中”。此外,今年5月,斯坦福大学开发出一套皮质内脑机接口系统,可以从运动皮层的神经活动中解码瘫痪患者想象中的手写动作,并将其转换为文本。

在超算领域,最值得一提的是,今年11月,我国超算应用团队凭借“超大规模量子随机电路实时模拟”成果斩获国际高性能计算应用领域的最高奖项“戈登贝尔奖”。

在开源方面,RISC-V开源指令集及其生态快速崛起;由华为公司牵头,中国科学粗亮院软件研究所、麒麟软件等参与的openEuler操作系统开源社区业已汇聚了7000名活跃开发者,完成8000多个自主维护的开源软件包,催生了10多家厂商的商业发行版……

回望2021年,信息技术版邀请业内专家梳理上述四个领域的发展脉络,展望未来发展趋势。

作者 张双虎

AlphaFold或是2021年人工智能(AI)领域的“一哥”。

近日,《科学》杂志公布了 2021 年度科学突破榜单,AlphaFold 和 RoseTTA-fold 两种基于人工智能预测蛋白质结构的技术位列榜首。

此前几天,由中国工程院院刊评选的“2021全球十大工程成就(近5年全球实践验证有效、有全球影响力的工程科学和技术重大成果)”中,AlphaGo和AlphaFold亦榜上有名。

在接受《中国科学报》采访时,数位专家回望今年人工智能领域取得的成就时,均谈到了AlphaFold。

“面向科学发现的AlphaFold和中国正在构建的人工智能发展生态不能不说。” 浙江大学人工智能研究所所长吴飞对《中国科学报》说。

中科院自动化研究所模式识别国家重点实验室研究员王金桥则提名“用AI进行新冠诊断”“人工智能与生物、制药、材料等科学融合(AI for Science)”和“三模态大模型紫东太初”。

在医学领域,AI识别咳嗽声早已用于肺炎、哮喘、阿尔茨海默氏症等疾病检测。美国麻省理工学院研究人员研发出可以通过分析咳嗽录音识别新冠患者的AI模型,识别出新冠患者咳嗽的准罩凳盯确率为98.5%,其中识别无症状感染者的准确度高达100%。日前,有报道称该模型已用于识别奥密克戎病毒。

“紫东太初首次实现了图—文—音语义统一表达,兼具跨模态理解和生成能力。” 王金桥说,“目前与新华社共同发布的‘全媒体多模态大模型研发计划’,实现对全媒体数据理解与生成的统一建模,打造全栈国产化媒体人工智能平台,已 探索 性地应用于纺织业和 汽车 行业质检等场景。”

12月7日, 科技 部官网公布3份函件,支持哈尔滨、沈阳、郑州3地建设国家新一代人工智能创新发展试验区。至此,我国已经有18个国家新一代人工智能创新发展试验区,这将引领带动中国人工智能创新发展。

“我国正在推动人工智能生态发展,构建良好生态。”吴飞说,“目前已有15个国家新一代人工智能开发创新平台、18个国家新一代人工智能创新发展试验区、8个人工智能创新应用先导区和高等学校设置的人工智能本科专业和交叉学科等人才培养载体。”

“一是大模型,二是人工智能和基础学科的结合。”孙茂松对《中国科学报》说,“语言大模型、图文大模型乃至多模态大模型的基本能力已得到了充分展现,确定了它作为智能信息处理基础软设施的地位。同时,它并非简单地扩大规模,而是对数字资源整合能力和计算能力都提出了挑战。虽然它的局限性也很明显,但它所表现出的某些‘奇特’性质(如少样本学习、深度双下降、基于提示的任务调整等),使学者产生了超大参数规模或会引发质变的期待,从而为新的突破埋下了伏笔。”

今年,人工智能领域从“大炼模型”走向“炼大模型”阶段,从千亿量级到万亿量级,在大模型领域,似乎没有最大,只有更大。

3月,北京智源人工智能研究院发布我国首个超大规模人工智能模型“悟道1.0”。6月,智源就改写了自己的纪录,发布悟道2.0,参数规模达到1.75万亿;9月,浪潮人工智能研究院推出了中文巨量语言模型——源 1.0,参数量达2457亿;11 月,阿里巴巴达摩院公布多模态大模型 M6 最新进展,参数从万亿跃迁至 10 万亿;12月,鹏城实验室与百度联合发布全球首个知识增强千亿大模型——鹏城—百度·文心,参数规模达到2600亿。

与此相应,最近快手和苏黎世联邦理工学院提出了一个新的推荐系统Persia,最高支持100万亿级参数的模型训练。

另一方面,人工智能在基础学科领域不断攻城略地。

7月,DeepMind公司人工智能程序Alphafold2研究成果又登顶《自然》,在结构生物学研究领域,人工智能或带领生物学、医学和药学挺进新天地;11月,美国南加利福尼亚大学研究人员通过脑机连接设备,让猴子玩 游戏 和跑步机,从而进行神经活动数据研究;12月,DeepMind开发的机器学习框架,已帮助人们发现了纯数学领域的两个新猜想,展示了机器学习支持数学研究的潜力。

“今年人工智能在各行业应用方面也取得不小的成绩。”孙茂松说,“人工智能与基础学科结合已显示出巨大潜力,发表了多篇顶级论文,已展露出某种较强的趋势性,即‘人工智能+基础科学’大有可为。”

作者 张双虎

脑机接口、AR眼镜、智能语音、肌电手环、隔空手势识别……2021年,从基础研究到应用落地,人机交互领域风起云涌。不管是智能 健康 、元宇宙,还是自动驾驶领域的蓬勃发展,似乎都表明,人机交互正站在产业化落地的门口。

“我们研发的高通量超柔性神经电极已通过科研临床伦理审批,即将开展脑机接口人体临床试验。”中科院上海微系统所副所长、传感技术联合国家重点实验室副主任陶虎对《中国科学报》说,“安全稳定地大规模采集人体大脑的神经元信号并进行闭环调控,将实现病人感知和运动功能的修复。”

脑机接口技术给患者带来越来越多的便利。今年5月,斯坦福大学研究人员在《自然》发表封面论文,开发出一套皮质内脑机接口系统,可以从运动皮层的神经活动中解码瘫痪患者想象中的手写动作,并将其转换为文本。借助该系统,受试者(因脊髓损失瘫痪)每分钟可以打出近百个字符,且自动更正后的离线准确率超过了 99%。

不久前,马斯克表示,希望明年能在人类身上使用Neuralink 的微芯片装置。该芯片将用于治疗脊髓损伤、帕金森氏症等脑部疾病和神经系统疾病。目前,相关技术正在等待美国食品药品监督管理局的批准。

“脑机接口领域已经蓄积了相当的技术,有望成为解决大脑疾病的利器。”陶虎说,“大家都在抢占临床应用的先机,明年可能会实现技术落地应用。预计两三年内,国内会出现可媲美马斯克Neuralink的独角兽企业。”

“人机交互将引申出新的万亿级市场。”福州大学特聘教授严群这句判断,也囊括了元宇宙这个巨大的市场。

有人称2021年是“元宇宙元年”,也有人认为这不过是“旧瓶装新酒”。但无论如何,元宇宙已是今年人机交互领域绕不开的话题。

“元宇宙是虚拟现实、增强现实和混合现实的综合,它实际上并非新的东西。”北京邮电大学人机交互与认知工程实验室主任刘伟告诉《中国科学报》,“元宇宙是现实世界和虚拟世界跨越未来的发展方向,但还有些技术问题未能很好地解决。”

在真实世界里,人机交互问题和人机环境系统的混合问题未能很好地解决。真实世界的人机交互中,不管是输入、处理还是输出过程中,客观数据、主观信息和知识依然不能完美融合。

刘伟认为,无论真实世界还是虚拟世界,人类和机器决策都有“快决策”和“慢决策”过程。人类决策有时依靠逻辑决策多些,有时直觉决策多些,这种“混合决策”不断变换,而且很难找到变化规律。这方面的问题机器决策目前还未能解决。

“元宇宙还处在画饼的前期阶段。”刘伟说,“因为它的底层机理没有解决——人在真实世界里未能完美解决人机交互的问题,带到元宇宙里同样不能解决。”

谈到人机交互,刘伟认为第二个不能不说的问题是“复杂领域”。

“今年的诺贝尔物理学奖,也给了复杂系统预测气候变化模型的提出者。”刘伟说,“人机交互也是一个复杂系统,它既包括重复的问题,还包括杂乱的、跨域协同的问题。”

刘伟认为,从智能的角度说,复杂系统包括三个重要组成部分,一是人,二是装备(人造物),三是环境。这其实是多个事物之间相互作用,交织在一起、既纠缠又重叠的“人机环系统”问题。

“在人机交互中,机器强在处理‘复’的问题,人擅长管‘杂’的事——跨域协同、事物间平衡等。因为人们还没找到复杂事物的简单运行规律,所以解决所有智能产品、智能系统问题,要从人、机、环这个系统里找它们的结合、融合和交互点。而且,人要在这个系统中处于主导地位。”

人机交互领域引起刘伟重视的第三个现象,是“人工智能帮数学家发现了一些定律”。“最近,DeepMind研发了一个机器学习框架,能帮助数学家发现新的猜想和定理。”刘伟说,“人工智能是一个基本的数学工具,同时,数学又反映了一些基本规律。如果人工智能可以帮助数学家处理一些数学问题,那么,人们将更好地认识复杂系统的简单规律,人机交互方面就可能会取得新突破。”

作者 张云泉(中国科学院计算技术研究所研究员)

今年是我国超算应用实现丰收的一年。

11月中旬在美国举行的全球超算大会(SC21)上,中国超算应用团队凭借基于一台神威新系统对量子电路开创性的模拟(“超大规模量子随机电路实时模拟”),一举摘得国际上高性能计算应用领域的最高学术奖——“戈登贝尔奖”。

同时,在SC 21大学生超算竞赛总决赛上,清华大学超算团队再次夺得总冠军,实现SC竞赛四连冠。这些大规模应用软件可扩展性和性能调优方面的成绩表明,我国在并行软件方面的发展方兴未艾。

回到超算对产业的驱动来看,我们要重提“算力经济”一词。早在2018年,我们提出“算力经济”概念,认为以超级计算为核心的算力经济将成为衡量一个地方数字经济发展程度的代表性指标和新旧动能转换的主要手段。

综合近几年的发展趋势,我们认为高性能计算当前发展趋势已充分表明,随着超算与云计算、大数据、AI的融合创新,算力已成为当前整个数字信息 社会 发展的关键,算力经济已经登上 历史 舞台。

通过对2021年中国高性能计算机发展现状综合分析,可以总结出当前高性能计算正呈现出以下几个特点。

首先,高性能计算与云计算已经深度结合。高性能计算通常是以MPI、高效通信、异构计算等技术为主,偏向独占式运行,而云计算有弹性部署能力与容错能力,支持虚拟化、资源统一调度和弹性系统配置。

随着技术发展,超级计算与容器云正融合创新,高性能云成为新的产品服务,AWS、阿里云、腾讯、百度以及商业化超算的代表“北龙超云”,都已基于超级计算与云计算技术推出了高性能云服务和产品。

其次,超算应用从过去的高精尖向更广、更宽的方向发展。随着超级计算机的发展,尤其是使用成本的不断下降,其应用领域也从具有国家战略意义的精密研制、信息安全、石油勘探、航空航天和“高冷”的科学计算领域向更广泛的国民经济主战场快速扩张,比如制药、基因测序、动漫渲染、数字电影、数据挖掘、金融分析及互联网服务等,可以说已经深入到国民经济的各行各业。

从近年中国高性能计算百强排行榜(HPC TOP100)来看,超算系统过去主要集中于科学计算、政府、能源、电力、气象等领域,而近5年互联网公司部署的超算系统占据了相当大比例,主要应用为云计算、机器学习、人工智能、大数据分析以及短视频等。这些领域对于计算需求的急剧上升表明,超算正与互联网技术进行融合。

从HPC TOP100榜单的Linpack性能份额看,算力服务以46%的比例占据第一;超算中心占24%,排名第二;人工智能、云计算和短视频分别以9%、5%和4%紧随其后。

可以看出,人工智能占比的持续增加与机器学习等算法和应用的快速崛起,以及大数据中的深度学习算法的广泛应用有很大关系。互联网公司通过深度学习算法重新发现了超级计算机,特别是GPU加速的异构超级计算机的价值,纷纷投入巨资建设新系统。

综合来看,目前的算力服务、超算中心、人工智能、科学计算等领域是高性能计算的主要用户,互联网、大数据,特别是AI领域增长强劲。

再次,国家层面已经制订了战略性的算力布局计划。今年5月,国家发展改革委等四部门联合发布《全国一体化大数据中心协同创新体系算力枢纽实施方案》,提出在京津冀、长三角、粤港澳大湾区、成渝以及贵州、内蒙古、甘肃、宁夏建设全国算力网络国家枢纽节点,启动实施“东数西算”工程,力促把东部的数据送到西部进行存储和计算,同时在西部建立算力节点,改善数字基础设施不平衡的布局,有效优化数据中心的布局结构,实现算力升级,构建国家算力网络体系。

最后,人工智能的算力需求已成为算力发展主要动力。机器学习、深度学习等算法革新和通过物联网、传感器、智能手机、智能设备、互联网技术搜集的大数据,以及由超级计算机、云计算等组成的超级算力,被公认为是人工智能时代的“三驾马车”,共同掀起最新一轮的人工智能革命。

在人工智能蓬勃发展这一背景下,虚拟化云计算向高性能容器云计算演进,大数据与并行计算、机器学习融合创新就成为了产业发展的最新方向。

此外,在智能计算评测方面,我国已经提出了包括AIPerf 500在内的众多基准测试程序,这是对传统Linpack测试标准的有力补充。

这些发展表明超算技术向产业渗透的速度加快,我们已经进入一个依靠算力的人工智能时代,这也是未来发展的必然趋势之一。随着用户对算力需求的不断增长,算力经济必将在未来 社会 发展中占据重要地位。

作者 武延军(中国科学院软件研究所研究员)

开源发展可圈可点并非只是今年的事。最近几年,开源领域发生了很多重要的事情。

例如,RISC-V开源指令集及其生态的快速崛起。这与上世纪90年代初Linux诞生一样。当时,UNIX和Windows是主流,很少有人能够预料到今天以Linux为内核的操作系统已经遍及人们生活的方方面面。

如今,人们每天使用的App,超过80% 概率是运行在以Linux为内核的安卓操作系统上,而且,支撑其业务的后端服务器上运行的操作系统很大概率也是Linux发行版。

所以,今天的RISC-V也同样可能被低估,认为其不成熟,很难与ARM和X86抗衡。但也许未来RISC-V就像Linux一样,最终成为全球范围内的主流指令集生态,产品遍及方方面面。

仅2020年,RISC-V International(RVI,RISC-V基金会迁入瑞士之后的新名称)的会员数增长了133%。其实RVI迁入瑞士这件事情本身也意义重大,是一次开源领域面对大国竞争保持初心不“选边站”的经典案例,值得全球其他开源基金会参考。

在国内,2019年底,华为公司牵头,中国科学院软件研究所、麒麟软件等参与的openEuler操作系统开源社区正式成立。在短短的两年内,社区已经汇聚了7000名活跃开发者,完成8000多个自主维护的开源软件包,催生了10多家厂商的商业发行版。

这是中国基础软件领域第一个真正意义上的“根社区”,虽然与20多年 历史 的Debian、Fedora还有差距,但迈出了重要一步,对学术研究、技术研发、产业创新来说,终于有了国内主导的、可以长期积淀的新平台。

同时,华为在遭遇安卓操作系统GMS(谷歌移动服务)海外断供之后,推出了鸿蒙操作系统HarmonyOS,并在开放原子开源基金会下启动开源项目OpenHarmony。

目前OpenHarmony短时间内已经吸引了国内众多厂商参与,也侧面反映了国内产业界对新一代万物互联操作系统的旺盛需求。尽管其在生态规模和技术完整程度方面与安卓仍有差距,但毕竟迈出了打造自主生态的第一步。

这相当于为源代码合理使用划定了一个边界,即合理使用仅限于接口,一旦深入到接口的实现代码,则需要遵守相关许可。这对开源知识产权的法律界定具有重要参考意义。

今年5月,《2021中国开源发展蓝皮书》重磅发布。它不仅系统梳理了我国开源人才、项目、社区、组织、教育、商业的现状,并给出发展建议,而且为国家政府相关管理部门制定开源政策、布局开源战略提供参考,为科研院所、 科技 企业以及开源从业者提供更多的案例参考和数据支撑。

而不论是开源软件向围绕开放指令集的开源软硬件生态发展,还是开源有严格的法律边界约束,抑或是国内龙头企业正尝试通过开源 探索 解决“卡脖子”问题,且已经取得了一定的效果……众多案例都指向一个方向——开源趋势不可阻挡。因为它源自人类分享知识、协同创造的天性,也是人类文明在数字时代薪火相传的重要模式。

当然,不可否认的是,开源还存在很多问题,例如,开源软件供应链安全的问题。这里的安全既有传统意义上软件质量、安全漏洞的问题,也有开源软件无法得到持续有效维护的问题(如OpenSSL在出现HeartBleed问题时只有两位兼职维护者,log4j出现问题时只有三位兼职维护者),更有大国竞争导致的“断供”问题(如GitHub曾限制伊朗开发者访问)。

随着开源软件向GitHub这类商业平台的集中,这一问题会更加突出,甚至演变为重大风险。开源软件这一本应属于全人类的智慧资产,可能变为实施“长臂管辖”的武器。为了避免这一问题,开源代码托管平台、开源软件构建发布平台等公共基础设施需要“去中心化”。世界需要多个开源软件基础设施,以最大程度消除政治力量对开源社区的威胁。

对于中国来说,随着开源软件成为众多科研、工业等重大基础设施的重要支撑部分,开源软件本身也要有一个基础设施,具备代码托管、编译、构建、测试、发布、运维等功能,保证开源软件供应的安全性和连续性,进而增强各行各业使用开源软件的信心。

未来,核心技术创新与开源贡献引领将成为国内企业发展的新动力,或将我国开源事业推向另一个高潮。

“东数西算”的智慧大脑!26座城市抢建智算中心

智东西(公众号:zhidxcom)

作者 | 杨畅

编辑 | 李水青

智东西2月25日消息,近日,“东数西算”国家项目正式启动,为数据中心产业带来了重要利好信号。(《 历史 时刻!“东数西算”国家工程全面启动》)

作为数据中心中领域的一颗“明珠”,智算中心也引起行业关注。

一般认为,智算中心全称是人工智能计算中心,主要是为人工智能(AI)应用提供所需算力服务、数据服务和算法服务,由AI芯片和算力机组等设备组成,与云计算中心、超算中心有一定区别。企业和研究机构可以依托智算中心提供的强大算力,驱动AI模型进行数据深度加工,实现AI应用创新。

“东数西算”国家项目强调在京津冀、长三角、成渝等八大枢纽间建设算力网络,支持全国各地日益增长的算力需求。而沿着这张算力网络“地图”,我们发现智算中心已经“遍地开花”。

细数过来,从2021年到2022年开年,全国有不下20座城市建成或正在建智算中心,智算中心数量达到27个,而其中位于八大枢纽的就有12个,接近50%。

“东数西算”工程国家算力枢纽节点范围内的智算中心

那么具体有哪些城市在建设或者规划建设智算中心?“东数西算”工程会对圆带智算中心带来什么样的影响?各地智算中心项目建设进度如何?可能会对当地AI产业有何影响?

智东西通过调查2021年以来各地规划、建设和建成的智算中心,并与业内人士交流,来与大家一起探讨这些问题。

据智东西统计,从2021年1月1日到2022年2月15日,全国共有至少26个城市在推动或刚刚完成当地智算中心的建设,这些城市中既有省会城市,例如南京、西安,也有非省会城市,像许昌、青岛。

其中,不少城市已经在本地建设了像大数据中心、云计算中心、国家超算中心等信息基础设施。不过这些中心并不能替代智算中心,它们之间的功能存在差异——像云计算中心,主要是提供云服务,超算中心主要为科学研究提供超算服务,智算中心则主要是为企业和科研院所提供普惠AI算力服务。

此外,中信所《人工智能计算中心发展白皮书(2021)》中指出,智算中心借鉴了超级计算(高性能计算)中心和云计算数据中心大规模并行计算和数据处理的技术架构,但它是以AI专用芯片为计算算力底座的。上述三类中心的软腊族件和业务架构不一样,不过云数据中心和超算中心也可以通过延展建设,来对外提供智能算力。

据我们统计,2021年,全国建成并投入运营或试运营的智算中心有8个,分别是武汉人工智能计算中心、合肥先进计算中心、南京智能计算中心、中国电信京津冀大数据智能算力中心、浙江(长三角)新一代全功能智能超算中心、西安未来人工智能计算中心、中原人工智能计算中心、哈尔滨人工智能先进计算中心,投运时间分别是5月、6月、7月、8月、9月、9月、10月和12月。这些智算中心中大部分都有二期建设规划。

截至目前,2021年和2022年各地投入运营的智算中心情况

一些智算中心并没有直接用“智算中心”或“人工智能计算中心”命名,而是采用“先进计算中心”或“智能超算中心”的命名方式,但它们也提供智能算力,所以也可以算作智算中心,例如合肥先进计算中心和浙江(长三角)新一代全功能智能超算中心。

不同智算中心的测算算力时采用的算力测试基准有所差别,使用算力单位略有不同,但是无论是“1 P OpS”、“1 PFLOPS FP16”、“1 Petaflops”还是“1 P”,都相当于每秒可进行一千万亿次运算。

2022年开年以来,国内已经有一个新投运橘局芦的智算中心,是位于上海的商汤 科技 人工智能计算中心。

很多城市是正在建设智算中心,从2021年1月1日到2022年2月15日,全国共有至少18个城市签约、开工、招标、计划建设智算中心项目,其中已经宣布开工建设的至少有6个城市,分别是合肥、庆阳、大连、沈阳、深圳、长沙。

截至目前,2021年和2022年各地规划或已经开始建设的智算中心情况

对比2021年之前的各地智算中心建设情况来看,2020年之前的智算中心项目更少一些。不过,部分2021年开工建成的智算中心其实在2020年就已经立项招标和预研规划,比如武汉人工智能计算中心项目。

智算中心并不是2021年才有的新类型数据中心,我国较早建成的智算中心还有深圳鹏城云脑、旷视芜湖AI超算中心等。2018年,鹏城云脑I初步建成并上线运行,算力达到100 PFLOPS(1 PFLOPS相当于每秒运算能力为一千万亿次)。

从全国智算中心的地理位置分布来看,目前,东部、中部和西部都有省市在部署智算中心。作为数据中心的一种,各地的智算中心建设规划难免会受到“东数西算”政策的影响。

特别是国家发改委等部门在《全国一体化大数据中心协同创新体系算力枢纽实施方案》等文件中指出:“原则上,对于在国家枢纽节点之外新建的数据中心,地方政府不得给予土地、财税等方面的优惠政策。”智算中心作为各地政府主导的项目,极有可能受到影响,但是并不一定会大批向西部地区迁移。因为智算中心主要面向AI相关产业,这些业务对于网络通信的要求也比较高,在这方面,东部地区略有优势。

中科曙光高级副总裁任京暘告诉智东西,“东数西算”工程会促进智算中心的发展,预计在全国一体化算力网络国家枢纽节点建设中,规划的数据中心项目会配置一定规模的智能算力,有些项目还可能是直接以智算中心的形态出现。

另外,从这些智算中心公布的算力规模情况来看, 100P算力是很多智算中心的起步目标 。

一般认为,100P大约相当于5万台高性能电脑的算力。拿科研场景为例,天文学家在20万颗天体的星空图中要定位某种特征星体,如果算力不够,耗时可能要超100天,如果拥有100P算力,定位星体所需时间仅为100秒。

任京暘说,一般智算中心提到的100P是指FP16或INT16,即半精度算力,就现阶段而言,以100P起步,能实现比较大的规模效益。

从需求角度看,智算中心作为城市级公共算力平台,要满足区域内政府、企业、高校等各类用户的算力需求,起步规模不宜过小,否则无法支撑类似大模型训练等大算力需求,也不足以发挥集约共享的规模效益。

任京暘补充道,从投资角度看,智算中心发展尚处于初期阶段,建设、运营、应用与生态建设等投入较大,需要结合地方财政承受能力做出合理评估,根据实际需求进行适度的超前部署。

大部分智算中心都是分期建设的,建成一期,就可以投入运营一期,后期再根据运行情况和产业发展需求进行二期、三期建设。

例如武汉人工智能计算中心,该智算中心在2021年5月完成了一期项目建设工作,并开始为企业提供AI算力,但很快饱和了。于是,武汉人工智能计算中心又进行了二期项目扩容工作,将算力规模从100P扩容到200P。武汉人工智能计算中心相关负责人在接受媒体采访时说,现在二期算力也接近饱和,随着准备进行进一步的算力扩容工作。

武汉人工智能计算中心

根据各智算中心的数据,至少数百家企业已经签约智算中心,例如武汉人工智能计算中心已经为多家高校和科研院所、100多家企业提供算力,南京智能计算中心已经吸引超40家产学研机构入驻。

一个智算中心可以同时支撑的产业场景很多,例如自动驾驶、智慧医疗、智慧城市、智慧交通、智慧矿山、智能制造等等,主要看当地的需求,一般都是为了支撑当地的优势产业更好发展。比如,青岛靠近海域,其人工智能计算中心招标文件就有提到青岛人工智能计算中心要支撑青岛优势产业集群,比如智能家居、智能制造等产业智能化持续领先,并着重强调支撑当地智慧海洋经济的发展。

上述智算中心都并不局限于支撑单一产业。不过,也有一些城市选择建设针对性更强的智算中心,像山西晋城建设了专门面向煤炭行业的智算中心(智能矿山创新实验室创新成果计算中心)。该智算中心由华为、晋能控股等企业参与建设,主要是为推动山西煤矿智能化建设。

智能矿山创新实验室创新成果计算中心

在智算中心建设过程中,市政和建筑设计企业背后的AI和ICT企业是重要角色,例如曙光、华为、浪潮、腾讯、商汤 科技 等企业。

在 探索 智算中心过程中,作为计算领域的头部玩家曙光提出了“5A级”智算中心建设方案,从开放、融合、绿色、普惠、服务五个方面,进行智算中心相关的实践和 探索 。目前,曙光5A级智算中心已在广东珠海、安徽合肥、浙江桐乡等地陆续落成,其江苏昆山等地的智算中心也进入建设阶段。

合肥先进计算中心

曙光智算中心会采用兼容多种芯片、算法、模型等的多元协作方式以实现多元算力提供。例如曙光参建的合肥先进计算中心不仅能提供智能算力,还能提供高性能计算所需算力。在降低智算中心、数据中心能耗方面,曙光研发有浸没式相变液冷技术,可使智算中心的PUE值降至1.04到1.05。

华为应该是比较早尝试智算中心的企业,而且也是参与各地智算中心建设最多的企业之一。华为升腾计算业务总裁许映童曾在2021世界人工智能大会期间透露,华为希望在2021年内启动超20个智算中心建设。

包括“鹏城云脑II”、“武汉人工智能计算中心”在内的几个华为承建的智算中心项目几乎都是使用华为的Atlas 900 AI集群架构,来实现AI算力供给的。Atlas 900 AI集群架构是由数千颗升腾910 AI处理器构成,其总算力达到256P 1024 PFLOPS FP16。

鹏城云脑

浪潮在智算中心方面也有多年的研究,无论是智算中心运行过程中算力生产、算力聚合、算力调度还是算力释放环节,浪潮都分别有相应的技术和软硬件支撑。南京智能计算中心就是采用了浪潮AI服务器算力机组和寒武纪思元270和思元290智能芯片及加速卡。

南京智能计算中心

作为数据中心行业的重要玩家,腾讯将其在数据中心方面的 探索 应用在了智算中心建设中,像腾讯智慧产业长三角(合肥)智算中心建设中就用到了腾讯第四代T-Block等高端模块化技术,支持项目快速交付。腾讯第四代T-Block等高端模块化技术就是将IT、空调等数据中心的各个功能模块化,以实现按需灵活配置。

商汤 科技 是从2018年开始进行人工智能计算中心预研工作的,2020年7月开始商汤 科技 人工智能计算中心建设工作。2022年1月24日,商汤 科技 人工智能计算中心启动运营。商汤 科技 人工智能计算中心的峰值算力高达3740 Petaflops,这背后包含了商汤 科技 的多种技术突破,包括高性能计算、分布式调度、硬件/软件协同设计等。

商汤 科技 人工智能计算中心

我们通过调查2021年以来建设和建成的智算中心,发现越来越多的城市已经开始了智算中心建设。这体现了各地对于AI产业的重视。从一些现有的智算中心建设工期来看,一般一期建设大概时间在半年到一年不等,今年可能会有更多在建的智算中心建成并投运。另外,“东数西算”工程也会对新的智算中心的规划、建设产生多重影响。

目前参与智算中心建设的企业相对有限,随着各地对智算中心建设需求的增加以及一些新玩家加入,智算中心领域玩家可能会面临更激烈的竞争。

打赢AI争夺战,要靠一张算力网

AI算力是未来国家、城市、企业的核心竞争力。

文丨华商韬略 陈必章

在人工智能时代,AI算力就是电,AI计算中心就是电厂。

电力时代,我们构建了一张“电网”,如今随着国内各地人工智能计算中心的相继落地,我们正在编锋梁如织一张AI算力网络。

目前,人工智能的发展已提升到国家战略层面,加快人工智能产业发展,保障和提供充沛的AI算力,对于赢在AI时代的国家、城市和企业来说,已经是迫在眉睫的问题。

【没有算力 就像没有电】

最近这段时间,全国很多地方政府和企业领导最闹心的事情什么?

答案可能是两个字:缺电。

但这个闹心的事情还没解决,在全球各国,乃至一国渣备之内的不同地区,又开始面临一个像电力一样,决定国计民生的关键要素。

这个关键要素就是AI算力。

AI算力,顾名思义,就是支撑AI的计算能力。 此处的计算不是加减乘除,而是对世界万物的计算,是万物互联、人工智能之下的高度复杂、无所不在的计算。

不同于传统算力,AI算力为了支撑AI模型的开发、训练和推理,对并行处理能力的要求特别高,也因此需要专门的AI芯片和框架。

比如, 具备强大浮点运算能力的AI芯片,才能够通过训练、持续迭代优化提供满足行业企业智能化转型的高质量AI模型。 复杂模型训练中,需对上千亿个浮点参数进行微调数十万步,需要精细的浮点表达能力。如果没有强大的训练芯片,则难以保障算法模型产出的效率。千亿级中文NLP(自然语言处理)大模型“鹏程·盘古”,面向生物医学领域的“鹏程·神农”平台的发布,都离不开AI芯片的支撑。

再比如,被视为“AI领域操作系统”的AI框架,90%的AI应用是基于AI框架层来开发。在该领域国内 科技 企业已取得重大成果: 业界领先的AI计算框架升思MindSpore,是一款支持端、边、云全场景的深度学习训练推理框架。 除具备自主可控的优势之外,一套框架即可支持AI+科学计算等多样性应用。当前升思MindSpore社区累计下载量超过60万,有超过100家高校选择升思MindSpore进行教学。

正是有了这些AI芯片和AI框架释放出的AI算力,我们才能加速进入万物互联和人工智能时代。

今天,从每个人手里的手机,到企业的云上平台,再到城市大脑……我们的生产和生活越来越依赖于AI,越来越深入向AI获取力量。

对中国来说,AI是从制造大国向制造强国转型升级的关键。 最近多年,众多城市都在努力争夺各种资源提升城市的发展力和竞争力,而AI算力就是未来发展最重要的“资源”。

在人工智能的世界,没有AI算力,就像没有电。

AI算力已渗入到我们生活和生产的方方面面,以大家较为熟悉的医院药房取药为例:

拿到处方药单,在药房前排队等候,由医务人员拿着处方照单分药,这种漫长的等待和焦虑,很多人都有切身体会。现在,已经有企业开发出利用人工智能技术进行全自动补发药品的机器人,用到了3D视觉定位、机器人智能抓取、智能视觉复核技术,能够确保100%补药准确率,而且效率也更高,发药速度可以达到每小时2500盒,8秒钟就可以处理一个订单。在药品发放过程中,系统可以自主调度搬运药品,不需要人工的干预。

它带来的最直观的改变,就是可以把药品分拣的时间从原来的50秒缩短到3秒,患者只需要一分钟就能取到药品。

这个过程中,怎么识别处方单,怎么准确分拣并发放药品?要实现这些功能就得看这个机器人使用的AI系统能算得有多快、多好、多准,这就是AI算力。

【要有电 就得有电厂和电网】

AI算力如此重要,但很多企业缺银启乏足够的资金来搭建自己的AI算力。那AI算力需求该如何被满足,国家、城市又该如何提供足够的AI算力支持,推动AI产业发展并赢得AI时代的竞争力呢?答案是, 要让AI算力成为公共资源,配套建立新型基础设施。

这种新型的算力基础设施就是人工智能计算中心,用回电气时代的比喻,那就是要建电厂和电网。

首先是,加快人工智能计算中心的建设。

人工智能计算中心,是以基于人工智能芯片构建的人工智能计算机集群为基础,涵盖了基建基础设施、硬件基础设施和软件基础设施的完整系统,其核心功能就是,提供从底层芯片算力释放到顶层应用使能的人工智能全栈能力,也就是输出AI算力。

人工智能计算中心除了是提供公共算力服务的平台,还同时应该是应用创新的孵化平台、产业聚合发展平台和科研创新人才培养平台。只有同时扮演好这些角色,才能打通“政产学研用”,集中最多的力量,形成产业汇聚力并提升AI竞争力。

目前,全世界都在加快人工智能计算中心建设。尤其是美国,它一方面千方百计地打压其它国家的发展,一方面则大手笔投入加强本国人工智能的发展,拜登政府更一度公布了3000亿美元的投资计划,捍卫美国在人工智能领域的领先地位,而其中很重要的投入,就是加强数据中心和智算中心的新基建。

中国当然不会轻易错过人工智能产业发展带来的机遇。早在2017年,国务院就发布了《新一代人工智能发展规划》,并强调要“建设高效能的计算基础设施”。去年疫情期间,中央进一步明确提出新基建战略,而加强数据中心和人工智能计算中心建设,则是整个新基建的重中之重。

因为,没有强大的算力,以数字化为着眼点的新基建七大领域几乎都无法实现其建设目标。

国家战略指引,市场前景召唤,甚至经济转型升级的压力下,诸多地方政府都已积极行动,牵头人工智能计算中心建设,并以此为基础提升本地算力水平,构筑数字时代的核心竞争力。

今年5月31日, 科技 部批复的15个国家人工智能创新发展试验区中,武汉的人工智能计算中心已率先竣工并投入运营;西安未来人工智能计算中心也已经上线,其它省市的人工智能计算中心建设也陆续规划中。

武汉人工智能计算中心投运以后,为武汉乃至湖北地区的经济发展、科研创新、企业转型等提供了算力支撑。

比如,武汉大学基于武汉人工智能计算中心打造了全球首个遥感专用框架武汉.LuojiaNet,针对“大幅面、多通道”遥感影像,在整图分析和数据集极简读取处理等方面实现了重大突破。

再比如,中科院自动化所利用该中心的算力支持,研发了全球首个视频生成多模态大模型——紫东.太初。作为业内首个千亿级三模态大模型,紫东.太初的视频理解与描述性能已做到全球第一,不仅具有多任务联合学习能力,还能通过学习实现AI化的图文搜索,以及音频、短视频、MV制作,极大缩短音视频的创造时间。

9月份,西北地区第一个人工智能计算中心落子西北重镇西安市,一期规划具备300P AI算力的西安未来人工智能计算中心,基于升腾AI基础软硬件平台建设,将提供精准可靠的模型训练及推理。

西安未来人工智能计算中心,已经签约了西安电子 科技 大学遥感项目、西北工业大学语音大模型项目、陕西师范大学“MindSpore研究室”多个项目,在支撑西安“6+5+6+1”现代产业体系发展的同时,也会强化西安乃至整个西北地区的人工智能产业集群,为西北地区人工智能产业的发展提供算力支持。

刚刚上线的西安未来人工智能计算中心,算力使用率已快接近满负荷状态。当地各行业企业、科研机构、高校对于算力的渴求可见一斑。

其次,高效利用人工智能计算中心的算力资源。

当越来越多人工智能计算中心建成、投运,如何让它们的算力更高效并服务到更多的行业和企业?如何避免各地算力分布不均衡、使用效率不一致的情况?如何让没有规划建设人工智能计算中心的地方,也能享受到AI算力的使能?人工智能计算中心之间的互联、协同、共享,成为需要各界考虑的一个问题。

这就需要人工智能算力网络了,就像电网之于电厂和用电对象。

有了算力网络,我们就能将分布在各地的人工智能计算中心节点连接起来,动态实时根据算力资源状态和需求,实现统筹分配和调度计算任务,构成全国范围内的感知、分配、调度人工智能中心的算力网络,然后在此基础上汇聚和共享算力、数据、算法资源。

最重要的是,有了这张网,更多的行业和企业,就能像现在用电一样使用AI算力了。

那么,算力网络这张网还会给整个人工智能行业有哪些作用呢?

首先是算力的汇聚, 就是把不同地区、不同城市的算力资源高速互联,实现跨节点之间的算力合理调度,资源弹性分配,这有利于提升各个人工智能计算中心的利用率,实现对于整体能耗的节省,后续可支持跨节点分布学习,为大模型的研究提供超级算力。

其次是数据的汇聚, 政府牵头与各行业企业合作,在达成人工智能领域的公共数据开放之后,可依托人工智能计算中心汇聚高质量的开源、开放的人工智能数据集,能够促进人工智能领域的算法开发和行业落地。

最后是生态的汇聚, 各个人工智能计算中心之间,统一互联标准、应用接口标准,实现网络内大模型能力开放与应用创新成果共享,强化跨区域科研和产业协作,为全国范围用户进行人工智能应用创新提供更多的资源选择和更便捷的合作方式,加速产业聚合,激活产业共融共生。

简单总结算力网络,就是汇聚大数据+大算力,使能大模型和重大科研创新,孵化新应用。进而实现算力网络化,降低算力成本,提升计算能效。

科技 部在三年行动规划中指出,要“布局若干人工智能计算中心,形成广域协同的人工智能平台”。在这一规划的指引下,人工智能计算中心陆续在许多城市落地。就在刚刚结束的HC2021上,20多个人工智能计算中心建设城市联合点亮了“人工智能算力网络”。

这张人工智能行业的算力网络,已经开始编织构建。

【AI算力建设 不是从长计议而是迫在眉睫】

2020年,麻省理工学院计算机科学家、并行计算先驱Charles Leiserson在《科学》杂志上撰文指出:

深度学习正逼近现有芯片的算力极限。

事实上,过去十年,人类最好的AI算法对算力的需求几乎增长了100万倍,平均每3.4个月翻一倍。

相比之下,全球AI算力的增长却十分有限。

需求与供给之间的巨大鸿沟,促使各国政府,尤其是中、美、欧、日等AI技术领先的地区大力建设AI算力。

没有强大AI算力,一个国家或地区必然在未来的 科技 竞争中处于劣势。

从当前算力基础设施建设进度来看,深圳、武汉、西安等城市均已建成人工智能计算中心并投入运营,成都、河南等城市正在建设中,北京、南京、上海等地的人工智能计算中心加速建设,也是蓄势待发。

未来,一旦人工智能计算中心全部建成,并组成人工智能算力网络,不但将为 社会 提供跨地域、源源不断的超级算力。而且,还能够实现跨区域的科研和产业协作,使能大模型和重大科研创新,为千行百业孵化新应用。

最终,使得人工智能赋能更多的行业和场景,让我们在未来国家之间的产业和 科技 竞争中立于不败之地。

——END——

版权所有,禁止私自转载!

上一篇:深圳乐高乐园度假区2024年开园,占地58万平方米(深圳乐高乐园门票预计多少钱 )
下一篇:广汽集团举办“瞬息未来”设计大赛,全球首发VANLIFE概念车(广汽末来 )

相关推荐

发表评论

◎欢迎参与讨论,请在这里发表您的看法、交流您的观点。